使用SVM对手写体数字图片分类

2023-12-23 22:52

本文主要是介绍使用SVM对手写体数字图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.实验目的

  1. 会用Python创建多分类SVM模型;
    2.使用多分类SVM模型对手写体数字图片分类;
    3.会对分类结果进行评价。

2. 设备与环境

Jupyter notebook

3.实验原理

加粗样式

4.实验内容

使用sklearn.svm类对手写体数字图片进行分类
训练数据:digits_training.csv
测试数据:digits_testing.csv
第1列是类别,其他列是特征属性。
先对1类和2类的数据进行计算,得到1类和2类的分割超平面,然后对2类和3类的数据进行计算,以此类推,直到两两类别分别完成计算。
在用模型做预测时,对两两类别之间的分割超平面分别进行匹配,统计有多少次判别将其华分类1类,多少次判别为2类…,判定所属类别次数最多的就是最后预测的类别。

  1. 载入训练数据、分出特征属性和类别,对特征属性标准化,显示读入数据的行数
    xTrain = trainData[:,1:Ntrain]
    yTrain = trainDta[:,0]
    标准化函数
    Def normalizeData(X):
    Return (X – X.mean())/X.max()
    2.训练多分类SVM模型
    Model = svm.SVC(decision_function_shape=’ovo’)
    3.保存训练模型名字为“svm_classifier_modell.m”
    4.载入测试数据,分出特征属性和类别,对特征属性标准化,显示读入是数据的行数
    5.使用模型对测试集进行预测,显示预测错误数据的数目、预测数据的准确率和模型内建正确率

5.实验结果分析

在这里插入图片描述

6.代码

import pandas as pd
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCAprint("载入训练数据,对数据进行标准化处理.....")
# 1. 载入训练数据、分出特征属性和类别,对特征属性标准化,显示读入数据的行数
train_data = pd.read_csv(r'D:\D\Download\360安全浏览器下载\digits_training.csv')N_train = train_data.shape[1]   # 特征数量
x_train = train_data.iloc[:, 1:N_train].values  # 特征属性
y_train = train_data.iloc[:, 0].values  # 类别# # 标准化函数
# def normalize_data(X):
#     return (X - X.mean()) / X.max()# x_train = StandardScaler().fit_transform(x_train)  # 标准化特征属性
# 标准化特征属性
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)# PCA降维
pca = PCA(n_components=0.85)  # 保留85%的方差
x_train_pca = pca.fit_transform(x_train_scaled)
print("训练数据:", len(train_data), "条")
# 2. 训练多分类SVM模型
print("训练模型...")
model = svm.SVC(decision_function_shape='ovo')
model.fit(x_train_pca, y_train)print("保存模型...")
# 3. 保存训练模型名字为“svm_classifier_model.m”
model_name = "svm_classifier_model.m"
import joblib
joblib.dump(model, model_name)print("加载测试数据,对数据进行标准化处理...")
# 4. 载入测试数据,分出特征属性和类别,对特征属性标准化,显示读入数据的行数
test_data = pd.read_csv(r'D:\D\Download\360安全浏览器下载\digits_testing.csv')N_test = test_data.shape[1] - 1  # 特征数量
x_test = test_data.iloc[:, 1:N_test + 1].values  # 特征属性
y_test = test_data.iloc[:, 0].values  # 类别# x_test = StandardScaler().fit_transform(x_test)  # 标准化特征属性
# 标准化测试数据并进行PCA转换
x_test_scaled = scaler.transform(x_test)
x_test_pca = pca.transform(x_test_scaled)
print("测试数据:", len(test_data), "条")print("加载训练好的模型,进行预测....")
# 5. 使用模型对测试集进行预测,显示预测错误数据的数目、预测数据的准确率和模型内建正确率
loaded_model = joblib.load(model_name)  # 加载模型predictions = loaded_model.predict(x_test_pca)
wrong_predictions = (predictions != y_test).sum()
accuracy = 1 - wrong_predictions / len(y_test)
model_accuracy = loaded_model.score(x_test_pca, y_test)print(f"预测错误数据: {wrong_predictions} 条\n测试数据正确率: {accuracy:.2f}\n模型内建的正确率估计: {model_accuracy:.2f}\n")

这篇关于使用SVM对手写体数字图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529746

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语