【深度学习】序列生成模型(六):评价方法计算实例:计算ROUGE-N得分【理论到程序】

本文主要是介绍【深度学习】序列生成模型(六):评价方法计算实例:计算ROUGE-N得分【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、BLEU-N得分(Bilingual Evaluation Understudy)
  • 二、ROUGE-N得分(Recall-Oriented Understudy for Gisting Evaluation)
    • 1. 定义
    • 2. 计算
      • N=1
      • N=2
    • 3. 程序

  给定一个生成序列“The cat sat on the mat”和两个参考序列“The cat is on the mat”“The bird sat on the bush”分别计算BLEU-N和ROUGE-N得分(N=1或N =2时).

  • 生成序列 x = the cat sat on the mat \mathbf{x}=\text{the cat sat on the mat} x=the cat sat on the mat
  • 参考序列
    • s ( 1 ) = the cat is on the mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the cat is on the mat
    • s ( 2 ) = the bird sat on the bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the bird sat on the bush

一、BLEU-N得分(Bilingual Evaluation Understudy)

  【深度学习】序列生成模型(五):评价方法计算实例:计算BLEU-N得分

二、ROUGE-N得分(Recall-Oriented Understudy for Gisting Evaluation)

在这里插入图片描述

1. 定义

  设 x \mathbf{x} x 为从模型分布 p θ p_{\theta} pθ 中生成的一个候选序列, s ( 1 ) , ⋯ , s ( K ) \mathbf{s^{(1)}}, ⋯ , \mathbf{s^{(K)}} s(1),,s(K) 为从真实数据分布中采样得到的一组参考序列, W \mathcal{W} W 为从参考序列中提取N元组合的集合,ROUGE-N算法的定义为:

ROUGE-N ( x ) = ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) \text{ROUGE-N}(\mathbf{x}) = \frac{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))}{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k))}} ROUGE-N(x)=k=1KwWcw(s(k))k=1KwWmin(cw(x),cw(s(k)))

其中 c w ( x ) c_w(\mathbf{x}) cw(x) 是N元组合 w w w 在生成序列 x \mathbf{x} x 中出现的次数, c w ( s ( k ) ) ) c_w(\mathbf{s}^{(k))}) cw(s(k))) 是N元组合 w w w 在参考序列 s ( k ) \mathbf{s}^{(k)} s(k) 中出现的次数。

2. 计算

N=1

  • 生成序列 x = the cat sat on the mat \mathbf{x}=\text{the cat sat on the mat} x=the cat sat on the mat
  • 参考序列
    • s ( 1 ) = the cat is on the mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the cat is on the mat
    • s ( 2 ) = the bird sat on the bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the bird sat on the bush
  • W = the, cat, is, on, mat, bird, sat, bush  \mathcal{W}=\text{ {the, cat, is, on, mat, bird, sat, bush }} W= the, cat, is, on, mat, bird, sat, bush 
w w w c w ( x ) c_w(\mathbf{x}) cw(x) c w ( s ( 1 ) ) c_w(\mathbf{s^{(1)}}) cw(s(1)) c w ( s ( 2 ) ) c_w(\mathbf{s^{(2)}}) cw(s(2)) min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}) min(cw(x),cw(s(1)) min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}) min(cw(x),cw(s(2))
the22222
cat11010
is01000
on11111
mat11010
bird00100
sat10101
bush00100
  • 分子 ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)})) k=1KwWmin(cw(x),cw(s(k)))
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) = 2 + 1 + 0 + 1 + 1 + 0 + 0 + 0 = 5 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)})=2+1+0+1+1+0+0+0=5 wWmin(cw(x),cw(s(1))=2+1+0+1+1+0+0+0=5
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) = 2 + 0 + 0 + 1 + 0 + 0 + 1 + 0 = 4 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)})=2+0+0+1+0+0+1+0=4 wWmin(cw(x),cw(s(2))=2+0+0+1+0+0+1+0=4
    • ∑ k = 1 2 ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) = ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) ) + ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) ) = 5 + 4 = 9 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))=\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}))+\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}))=5+4=9 k=12wWmin(cw(x),cw(s(k)))=wWmin(cw(x),cw(s(1)))+wWmin(cw(x),cw(s(2)))=5+4=9
  • 分母 ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)}) k=1KwWcw(s(k))
    • ∑ w ∈ W c w ( s ( 1 ) ) = 6 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1))}=6 wWcw(s(1))=6
    • ∑ w ∈ W c w ( s ( 2 ) ) = 6 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=6 wWcw(s(2))=6
    • ∑ k = 1 2 ∑ w ∈ W c w ( s ( k ) ) = ∑ w ∈ W c w ( s ( 1 ) ) + ∑ w ∈ W c w ( s ( 2 ) ) = 12 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)})= \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1)})+ \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=12 k=12wWcw(s(k))=wWcw(s(1))+wWcw(s(2))=12
  • ROUGE-N ( x ) = ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) = 5 + 4 6 + 6 = 9 12 = 0.75 \text{ROUGE-N}(\mathbf{x}) = \frac{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))}{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k))}}=\frac{5+4}{6+6}=\frac{9}{12}=0.75 ROUGE-N(x)=k=1KwWcw(s(k))k=1KwWmin(cw(x),cw(s(k)))=6+65+4=129=0.75

N=2

  • 生成序列 x = the cat sat on the mat \mathbf{x}=\text{the cat sat on the mat} x=the cat sat on the mat
  • 参考序列
    • s ( 1 ) = the cat is on the mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the cat is on the mat
    • s ( 2 ) = the bird sat on the bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the bird sat on the bush
  • W = the cat, cat is, is on, on the, the mat, the bird, bird sat, sat on, the bush  \mathcal{W}=\text{ {the cat, cat is, is on, on the, the mat, the bird, bird sat, sat on, the bush }} W= the cat, cat is, is on, on the, the mat, the bird, bird sat, sat on, the bush 
w w w c w ( x ) c_w(\mathbf{x}) cw(x) c w ( s ( 1 ) ) c_w(\mathbf{s^{(1)}}) cw(s(1)) c w ( s ( 2 ) ) c_w(\mathbf{s^{(2)}}) cw(s(2)) min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}) min(cw(x),cw(s(1)) min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}) min(cw(x),cw(s(2))
the cat11010
cat is01000
is on01000
on the11111
the mat11000
the bird00100
bird sat00100
sat on10111
the bush00100
  • 分子 ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)})) k=1KwWmin(cw(x),cw(s(k)))
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) = 3 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)})=3 wWmin(cw(x),cw(s(1))=3
    • ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) = 2 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)})=2 wWmin(cw(x),cw(s(2))=2
    • ∑ k = 1 2 ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) = ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 1 ) ) ) + ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( 2 ) ) ) = 3 + 2 = 5 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))=\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(1)}))+\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(2)}))=3+2=5 k=12wWmin(cw(x),cw(s(k)))=wWmin(cw(x),cw(s(1)))+wWmin(cw(x),cw(s(2)))=3+2=5
  • 分母 ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) \sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)}) k=1KwWcw(s(k))
    • ∑ w ∈ W c w ( s ( 1 ) ) = 5 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1))}=5 wWcw(s(1))=5
    • ∑ w ∈ W c w ( s ( 2 ) ) = 5 \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=5 wWcw(s(2))=5
    • ∑ k = 1 2 ∑ w ∈ W c w ( s ( k ) ) = ∑ w ∈ W c w ( s ( 1 ) ) + ∑ w ∈ W c w ( s ( 2 ) ) = 10 \sum_{k=1}^{2} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k)})= \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(1)})+ \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(2)})=10 k=12wWcw(s(k))=wWcw(s(1))+wWcw(s(2))=10
  • ROUGE-N ( x ) = ∑ k = 1 K ∑ w ∈ W min ⁡ ( c w ( x ) , c w ( s ( k ) ) ) ∑ k = 1 K ∑ w ∈ W c w ( s ( k ) ) = 3 + 2 5 + 5 = 5 10 = 0.5 \text{ROUGE-N}(\mathbf{x}) = \frac{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), c_w(\mathbf{s}^{(k)}))}{\sum_{k=1}^{K} \sum_{w \in \mathcal{W}} c_w(\mathbf{s}^{(k))}}=\frac{3+2}{5+5}=\frac{5}{10}=0.5 ROUGE-N(x)=k=1KwWcw(s(k))k=1KwWmin(cw(x),cw(s(k)))=5+53+2=105=0.5

3. 程序

main_string = 'the cat sat on the mat'
string1 = 'the cat is on the mat'
string2 = 'the bird sat on the bush'words = list(set(string1.split(' ')+string2.split(' ')))  # 去除重复元素total_occurrences, matching_occurrences = 0, 0
for word in words:matching_occurrences += min(main_string.count(word), string1.count(word)) + min(main_string.count(word), string2.count(word))total_occurrences += string1.count(word) + string2.count(word)print(matching_occurrences / total_occurrences)bigrams = []
split1 = string1.split(' ')
for i in range(len(split1) - 1):bigrams.append(split1[i] + ' ' + split1[i + 1])split2 = string2.split(' ')
for i in range(len(split2) - 1):bigrams.append(split2[i] + ' ' + split2[i + 1])bigrams = list(set(bigrams))  # 去除重复元素total_occurrences, matching_occurrences = 0, 0
for bigram in bigrams:matching_occurrences += min(main_string.count(bigram), string1.count(bigram)) + min(main_string.count(bigram), string2.count(bigram))total_occurrences += string1.count(bigram) + string2.count(bigram)print(matching_occurrences / total_occurrences)

输出:

0.75
0.5

这篇关于【深度学习】序列生成模型(六):评价方法计算实例:计算ROUGE-N得分【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529719

相关文章

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤