limma:单通道数据和RNA-seq数据差异性分析标准方法

2023-12-23 18:44

本文主要是介绍limma:单通道数据和RNA-seq数据差异性分析标准方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

单通道数据极为流行,三大公司:Affymetrix、Illumina和Agilent的微阵列(microarray)技术产生的很多都是单通道数据。现在的主力的高通量测序机所产生的也是单通道数据,所以只要是被voom标准化(包括了log转化)的RNA-seq数据都可以看作和microarray一样的数据[引用]。这是一个很重要很有用的概念,相信会帮到很多生物信息入门者:

RNA-seq data + voom标准化 = microarray data

分析单通道数据其实是最好理解的,和普通的线性回归或者方差分析几乎是一样的。与微阵列数据不同的是,单通道数据通常需要依赖对比,缺少内参,所以R中设计程序的适合没几个标准参数可以用。这一篇文章中,我们仅仅使用最简单的两组对比设计的示例来做最简单的差异性分析。

示例

示例中的样本一共有两组共8个,前4个为正常组织,后4个为肿瘤组织。我们假设我们的表达举证为counts,counts应该长这样:

我们需要对这个矩阵进行voom转化,voom就是把 counts 转化为 log2-cpm的过程。

Voom

我们把下列的代码保存,并起名字为voom:

# assume counts is your Expression matrix
#Once a matrix of read counts counts has been created, with rows for genes and columns for samples,
#it is convenient to create a DGEList object using the edgeR package:dge <- DGEList(counts=counts)#The next step is to remove rows that consistently have zero or very low counts. One can for
#example usekeep <- filterByExpr(dge, design)
dge <- dge[keep,,keep.lib.sizes=FALSE]# It is usual to apply scale normalization to RNA-seq read counts, and the TMM  normalization
#method in particular has been found to perform well in comparative studies. This can be applied
# to the DGEList object:
dge <- calcNormFactors(dge)# voom 任选一种:
# 普通:
v <- voom(dge, design, plot=TRUE)
# 直接使用counts数据进行voom
# It is also possible to give a matrix of counts directly to voom without TMM normalization, by
v <- voom(counts, design, plot=TRUE)
# 如果你觉得原始数据噪声很大,也可以
#If the data are very noisy, one can apply the same between-array normalization methods as would
#be used for microarrays, for example:
v <- voom(counts, design, plot=TRUE, normalize="quantile")

设置分组

接下来就是设计矩阵了,根据要不要"对比矩阵",我们得到type分配了分组(处理):

type <- c("normal","normal","normal","normal","tumor","tumor","tumor","tumor")

设计矩阵分两种情况讨论

第一种:不要设计矩阵

# Here the first coefficient estimates the mean log-expression for wild type mice and plays the role
# of an intercept. Group <- factor(type, levels=c("normal","tumor"))
design <- model.matrix(~Group)
colnames(design) <- c("normal","tumorvsnormal")
designsource("voom")fit <- lmFit(v, design)
fit <- eBayes(fit)
topTable(fit, coef="tumorvsnormal", adjust="BH")

 第二种:要设计矩阵


#第二种设计
#The second coefficient estimates the difference between mutant and wild type.
#Differentially expressed genes can be found bydesign <- model.matrix(~0+type)
colnames(design) <- c("normal","tumor")source("voom")fit <- lmFit(v, design)
cont.matrix <- makeContrasts(tumorvsnormal=tumor-normal, levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)
topTable(fit2, adjust="BH")

结果

我们看一下结果:

我们来看结果

你会发现结果是一样的,以上是针对单通道数据和voom标化 RNA-seq数据而言的二组对比,也是最常用的差异性分析方法,分享给大家。 

引用

Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29

这篇关于limma:单通道数据和RNA-seq数据差异性分析标准方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529070

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛