HashData助力中科院打造地球大数据

2023-12-23 08:50

本文主要是介绍HashData助力中科院打造地球大数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述
背景

中国科学院“地球大数据科学工程”A类战略性先导科技专项(简称“地球大数据专项”)于2018年1月1日正式立项。该工程以建成具有全球影响力、国际化、开放式的国际地球大数据科学中心为目标,致力于推动并实现地球大数据技术创新、重大科学发现和一站式全方位宏观决策系统。

地球大数据专项一个典型的应用例子是:定量统计分析黄河三角洲过去40年的变化,包括湿地海岸线、河岸生态系统以及土地利用类型等。传统的做法是派遣科研人员到实地考察,这是几乎不能完成的任务。我们希望通过该工程,基于对地检测卫星过去40年拍摄到的黄河三角洲的遥感图片,利用深度学习和海量地理数据处理技术,精确地量化具体变化指标。

产品形态上,地球大数据专项的目标是打造中国版的“谷歌地球”,设置了包括地球大数据卫星、数据一路一带、全景美丽中国和大数据云服务平台等在内的共9个子项目。其中,大数据云服务平台是整个专项的技术基座,通过将资源、环境、生物、人文、生态等领域的数据汇聚起来,构建一个数据存储、分析处理和共享平台,并在此基础上提供数字地球科学服务。

面临挑战

作为一个雄心勃勃的项目技术基座,地球大数据云服务平台自然面临着一系列技术挑战:
数据规模庞大,结构众多:
• 支持38PB基础存储量,每年新增5PB数据;
• 对地观测、地面观测、基础地理等多种业务模式;
• 涵盖结构化、半结构化、非结构化格式;
应用场景广泛:
• 支持33个院系、129个单位使用;
• 涵盖资源、环境、生物、生态多个领域,不同学科的融合;
科学计算特性:
• 满足高性能计算需求及数据格式多样化;
数据存储和访问:
• 支持100+PB的数据规模及灵活访问方式;
共享与隔离:
• 方便数据共享及计算性能的隔离;

解决方案

作为地球大数据专项的外协单位,我们与中科院网络中心、中科院计算所一起参与规划建设了大数据云服务平台,利用HashData数据仓库为整个工程提供海量数据的存储和处理分析能力。大数据云平台整体架构图如下:
请添加图片描述通过集成到地球大数据云平台的HashData数据仓库服务,科研院所单位用户可以在几分钟内创建启动一个数据仓库,规模从几个到上百个节点,数据加载后立即开始数据分析任务。随着数据量和分析工作负载的变化,还可以动态地对数据仓库集群进行弹性伸缩。同时,由于是完全托管的云服务,HashData管理控制台承担了所有的集群资源配置、数据备份、持续监控、网络迁移、故障恢复、高可用和升级等纷繁复杂、易出错的运维工作,让用户(特别是考虑到地球大数据云平台的主要用户是科研人员,而不是IT人员)专注于科研数据分析上。

其次,对象存储作为整个地球大数据云平台的数据持久层,能够以非常低的成本存储提供海量存储能力,包括结构化、半结构化和非结构化数据,有很高的可用性和持久性,满足专项日益增长的数据量。结合HashData湖仓一体的能力,用户可以通过统一的SQL接口对各种数据进行高性能的融合分析处理。

再次,借助HashData数据仓库元数据、计算和存储三者分离、多集群统一数据存储的架构(参考文章《HashData多集群共享统一存储架构》),每个科研院系单位都可以创建自己的计算集群,确保计算性能隔离的同时,又能够实现数据在不同院系之间的充分共享,加速科研进度。

最后,通过基于HashData的MPP计算引擎实现分布式PostGIS功能,进行矢量和栅格数据处理,架构示意如下:
请添加图片描述
整体实现了分布式GIS空间数据处理, 支持矢量、栅格数据分布式加载入库,并在库内针对空间数据建立索引, 栅格数据入库可自动切割瓦片,根据瓦片边界建立索引。在内部实现的GIS空间数据高效分布式计算,支持空间范围查询、矢量数据叠加分析。

总结

HashData数据仓库云服务已于2020年12月30号在地球大数据云平台上线,可为130余家科研院所提供大数据分析服务。除了为大数据云平台包括地球共享服务系统、CASEarth Databank系统和数据丝路地球大数据系统等其它系统提供支撑外,同时还为科学院内部院系提供通用的数据仓库服务,用于多种应用场景,包括寒旱所的地表观测数据处理,遥感所的植被分布统计,和地质所的地质勘探数据分析。在地理信息数据处理性能方面,相对于之前的解决方案,HashData数据仓库也有很大的提升,例如数据加载提速近100倍,栅格数据叠加分析提速近70倍。

随着地球大数据云平台的逐步成熟稳定,HashData数据仓库将支撑越来越多的数据存储、分析和共享任务,为中科院数字地球科学研究做出更多贡献。

这篇关于HashData助力中科院打造地球大数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527439

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转