数据可视化---离群值展示

2023-12-22 22:15
文章标签 数据 可视化 展示 离群

本文主要是介绍数据可视化---离群值展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容导航

类别内容导航
机器学习机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据PySpark大数据处理详细教程
使用教程CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理面试题—机器学习算法
面试题—推荐系统

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_line(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]# #不同着色,正常绿色,离群值红色# sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.plot(data.index,data.values,'bo--',alpha=0.4)plt.scatter(error.index,error.values,c='r',s=60)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max()+data.values.max()*0.01,r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))# 添加水平辅助线plt.axhline,添加垂直辅助线plt.axvline(轴位置,线形,标签))plt.axhline(left,linestyle = '--',label="{} sigma low".format(threshold))plt.axhline(right,linestyle = '--',label="{} sigma up".format(threshold))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.legend(loc='best')plt.show()fig.savefig('Outlier_visualization_line.png',dpi=600)data = np.random.randn(100)*100
Outlier_visualization_line(data,threshold=1.5)

在这里插入图片描述

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_scatter(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]#不同着色,正常绿色,离群值红色sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.scatter(data.index,data.values,marker='o',c=sp)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max(),r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.show()fig.savefig('Outlier_visualization_scatter.png',dpi=600)data = np.random.randn(10000)*100
Outlier_visualization_scatter(data,threshold=2.7)

在这里插入图片描述

友情提示如果你觉得这个博客对你有帮助,请点赞、评论和分享吧!如果你有任何问题或建议,也欢迎在评论区留言哦!!!

这篇关于数据可视化---离群值展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525650

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I