指标体系构建-01-什么是数据指标

2023-12-22 16:52

本文主要是介绍指标体系构建-01-什么是数据指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考

四千字全面解析数据产品经理必知概念:标签、维度、指标

什么是数据指标

指标是指于其中打算达到的指数,规格,标准等,是用数据对事物进行描述的工具。通常指标对应是否有价值取决于这个指标的实际意义。同时关注指标对应的数值,主要关注其单位及波动性。

动态指标半动态指标静态指标
销量年龄性别

举个栗子🌰:

口头描述:这家店生意很好
数据描述:这家店昨天的营业额是16000元
数据指标:昨日营业额

数据指标,需要有清晰的定义,举个栗子🌰:
昨日营业额 这个数据指标怎么描述

数据指标:昨日营业额
统计时间:昨日00:00-23:59
数据来源:店铺POS机交易流水
数据计算:POS记录的交易订单(不含退货单) 的 金额汇总

再举个栗子🌰:
7日留存率 这个数据指标怎么描述

数据指标:7日留存率
统计时间:7天内的数据
数据来源:app登录数据
数据计算:留存率=某范围活跃用户数在第N日仍启动该App的用户数的占比
数据描述:比如8.2号新注册的用户在8.9号之前又再次登录的数据

数据指标、标签、维度的区别

数据指标 VS 标签 VS 维度

数据指标的作用上文已经说过,是数据对事物进行描述的工具

数据指标:昨日营业额(昨日营业额16000元)

标签是什么,举个栗子🌰:

是为了描述事物、区分事物的某种缩略代指。比如(百年)老店、新店(开业)中的老店和新店就是标签。
任何描述性的文本,都可以作为标签。它可以是成语,也可以是词语,也可以是不完整的句子。
在这里插入图片描述甚至也可以是形象、图片、符号,也能是标签。一个笑脸、一个红心、一个太阳就能代表很多很多,一图胜千言。当然,每个人都有自己的解读。
标签和维度值的概念重叠度比较高

数据指标:昨日营业额(昨日营业额16000元)
标签:店铺类型(旗舰店/社区店、老店/新店)

什么是维度,,举个栗子🌰:
物以类聚人以群分,一个自然而然的逻辑是:先有物和人,再有类和群。
这里的物和人就是 标签,但人又分为傣族人,汉族人,白种人,这个就是群,人按照群分就是维度。
建立维度,其实是归纳归类,继续做了一层抽象。

最简单的维度,是二元的:是/否。比如,测过核酸 / 没测过核酸。
在这里插入图片描述

维度是灵活变通的,可以持续细化,不同维度可以相互组合的。

为了讲清楚维度,我不得不再引入一个相关的词,粒度。
粒度,其实就是描述事物、事情过程的细致程度。
为了更细粒度的分类描述,我们可以利用更多不同的前后缀修饰词创建新的维度。

就拿测核酸这个事情来举例。,举个栗子🌰:

假如一开始只区分是否测过核酸,后来病毒持续演进,抗疫成了持久战,后来开始区分时间:近30天、近7天、近3天是否测过核酸。
后续为了更加精细化防控,再加上来小区的维度,那就变成:A 小区近 7 天是否测过核酸、B 小区近 3 天是否测过核酸。

维度之间也可以合并和归总。

正向可以,反之亦然,我们也可以将细粒度的维度合并成更粗的维度。
如果一开始就高瞻远瞩,基于现实情况,设定了较为贴切的粒度,将统计的维度设置为近N天、小区、是否测核酸。
后续抗疫效果显著,粒度不需要再那么细,只需要按照月份、城市进行统计的时候,这些维度也可以归总:月份、城市、是否测过核酸。

维度的下钻和上卷

按照很多文章的说法,这个两个模块叫做维度的下钻和上卷。
但是,下钻和上卷比较抽象,我比较建议大家通过实际例子来构建自己的理解。
其实可以看到,维度和粒度之间相互影响、相互解释:维度越多,粒度越细。
为了方便,也可以将常见的特别细粒度的维度组合,合并成一个新的维度进行统称。
任何维度的设定,以及维度的下钻和上卷,都是基于我们想了解什么粒度的信息。

标签 分类维度 指标

一般指标指的是连续型的数据,
而标签指的是有业务含义的分类数据
标签可以通过指标计算得到,比如老店:开业时间>=24个月的店
标签是有强业务含义、强业务指向性的分类维度

在这里插入图片描述

如何得到数据指标

数据指标是事务的数据描述,所以……

1.对象是谁?
2.想描述他哪方面东西?
3.有没有数据记录?

举个栗子🌰:

我要找对象我要找搬运工
对象男人男人
哪方面高富帅信用卡、收费合理
数据记录高:直接测量 富:信用卡?车?房产证 帅:主管评分信用好:中介评分、完成订单数 收费合理:收费金额

注意!同一个目标,也会有不同判断,举个栗子🌰:

我要找对象我要找对象
对象男人男人
哪方面高富帅对我好
数据记录高:直接测量 富:信用卡?车?房产证 帅:主管评分给我钱用 帮我干活

从单个数据指标到指标体系

当一个指标,不足以描述事务的时候,需要指标体系
在这里插入图片描述

在指标体系中,数据之间有三种关系

并列关系(没有关系):高、富、帅
包含关系:财产= 流动财产+固定财产,流动财产=收租房间数*租金
流程关系:他对我感兴趣 → 聊天 → 约会 → 表白 →结婚

包含关系

在这里插入图片描述

在流程关系中,有过程/结果指标的区别
在这里插入图片描述

所谓建立指标体系,就是……

1.锁定一个观察对象
2.明确一个目标:我想了解它的XX
3.收集相关指标,确认有数据可采集
4.按并列、包含、流程,把指标组织好
5.进行观察,得到我想要的结论

用户画像指标体系

在这里插入图片描述

这篇关于指标体系构建-01-什么是数据指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524717

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键