图片数据不够快来试试使用imgaug增强数据

2023-12-22 16:08

本文主要是介绍图片数据不够快来试试使用imgaug增强数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读

我们经常会遇到训练模型时数据不够的情况,而且很多时候无法再收集到更多的数据,只能通过做一些数据增强或者其它的方法来合成一些数据。常用的数据增强方式有裁剪旋转缩放亮度对比度色度饱和度变换,这篇文章我们来介绍一个更方便更多方式的数据增强,我们将会通过imgaug库来实现。

imgaug

imgaug是一个python的图像增强库,它能够通过输入图片产生新图片的集合,能够通过不同的策略来改变图片以达到数据增强的目的。
它能够应用于图像分类图像分割关键点定位目标检测等任务的数据增强
github地址:https://github.com/aleju/imgaug
在这里插入图片描述

特点
  • 多种数据增强技术
    仿射变换、透视变换、对比度改变、高斯噪声添加、色度饱和度变化、随机裁剪、模糊处理
    只处理部分图片
    随机顺序组合策略进行数据增强
  • 支持多种任务处理
    Images、Heatmaps、Segmentation Maps、mask、keypoints、landmarks、Bounding Boxes、Polygons、Line Strings
  • 支持多种数据分布
    根据不同的数据分布来产生随机参数,支持均匀分布高斯分布beta分布
  • 内置多种辅助函数
    绘制heatmaps、segmentation maps、keypoints、bounding boxes等
    缩放segmentation maps、平均池化、最大池化等
  • 多核CPU数据增强
安装
  • 环境要求
    python2.7python3.4+
  • 使用conda安装和卸载
#安装
conda config --add channels conda-forge
conda install imgaug
#卸载
conda remove imgaug
  • 使用pip安装和卸载
#安装
pip install imgaug
#使用git上最新版本进行安装
pip install git+https://github.com/aleju/imgaug.git
#卸载
pip uninstall imgaug
使用示例
  • 简单的数据增强
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
import cv2def simple_example():seq = iaa.Sequential([#从图片边随机裁剪50~100个像素,裁剪后图片的尺寸和之前不一致#通过设置keep_size为True可以保证裁剪后的图片和之前的一致iaa.Crop(px=(50,100),keep_size=False),#50%的概率水平翻转iaa.Fliplr(0.5),#50%的概率垂直翻转iaa.Flipud(0.5),#高斯模糊,使用高斯核的sigma取值范围在(0,3)之间#sigma的随机取值服从均匀分布iaa.GaussianBlur(sigma=(0,3.0))])#可以内置的quokka图片,设置加载图片的大小# example_img = ia.quokka(size=(224,224))#这里我们使用自己的图片example_img = cv2.imread("example.jpg")#对图片的通道进行转换,由BGR转为RGB#imgaug处理的图片数据是RGB通道example_img = example_img[:,:,::-1]#数据增强,针对单张图片aug_example_img = seq.augment_image(image=example_img)print(example_img.shape,aug_example_img.shape)#(700, 700, 3) (544, 523, 3)#显示图片ia.imshow(aug_example_img)simple_example()

在这里插入图片描述

  • 结合多种数据增强策略
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
import cv2#设置随机数种子
ia.seed(8)def example():#读取图片example_img = cv2.imread("example.jpg")#通道转换example_img = example_img[:, :, ::-1]#对图片进行缩放处理example_img = cv2.resize(example_img,(224,224))seq = iaa.Sequential([iaa.Fliplr(0.5),#随机裁剪图片边长比例的0~0.1iaa.Crop(percent=(0,0.1)),#Sometimes是指指针对50%的图片做处理iaa.Sometimes(0.5,#高斯模糊iaa.GaussianBlur(sigma=(0,0.5))),#增强或减弱图片的对比度iaa.LinearContrast((0.75,1.5)),#添加高斯噪声#对于50%的图片,这个噪采样对于每个像素点指整张图片采用同一个值#剩下的50%的图片,对于通道进行采样(一张图片会有多个值)#改变像素点的颜色(不仅仅是亮度)iaa.AdditiveGaussianNoise(loc=0,scale=(0.0,0.05*255),per_channel=0.5),#让一些图片变的更亮,一些图片变得更暗#对20%的图片,针对通道进行处理#剩下的图片,针对图片进行处理iaa.Multiply((0.8,1.2),per_channel=0.2),#仿射变换iaa.Affine(#缩放变换scale={"x":(0.8,1.2),"y":(0.8,1.2)},#平移变换translate_percent={"x":(-0.2,0.2),"y":(-0.2,0.2)},#旋转rotate=(-25,25),#剪切shear=(-8,8))#使用随机组合上面的数据增强来处理图片],random_order=True)#生成一个图片列表example_images = np.array([example_img for _ in range(32)],dtype=np.uint8)aug_imgs = seq(images = example_images)#显示图片ia.show_grid(aug_imgs,rows=4,cols=8)example()

在这里插入图片描述

  • bounding box的数据增强
from imgaug.augmentables.bbs import BoundingBox,BoundingBoxesOnImagedef bounding_box_example():#读取图片img = cv2.imread("example.jpg")#变换通道img = img[:, :, ::-1]bbs = BoundingBoxesOnImage([#目标在图片上的位置BoundingBox(x1=340,y1=236,x2=598,y2=481)],shape=img.shape)#数据增强seq = iaa.Sequential([iaa.AdditiveGaussianNoise(scale=0.05*255),iaa.Affine(translate_px={"x":(10,100)})])#变换后的图片和boximg_aug,bbs_aug = seq(image=img,bounding_boxes=bbs)#绘制变换前box在图片上的位置img_before = bbs.draw_on_image(img,size=2)#绘制图片变换后box在图片上的位置img_after = bbs_aug.draw_on_image(img_aug,size=2,color=[255,0,0])ia.show_grid([img_before,img_after],rows=1,cols=2)bounding_box_example()

在这里插入图片描述
通过上面两张图对比,可以发现变换前后,box在图片上的位置并没有发生变化。

  • 数据增强参数的数据分布设置
def param_distribution():img = cv2.imread("example.jpg")img = img[:,:,::-1]#高斯模糊数据增强,参数服从均匀分布aug_blurer = iaa.GaussianBlur(10 + iap.Uniform(0.1,3.0))img_aug = aug_blurer(image=img)#Clip裁剪参数的范围,使其在0.1到3.0之间aug_blurer = iaa.GaussianBlur(iap.Clip(iap.Normal(1.0,0.1),0.1,3.0))img_aug = aug_blurer(image=img)
  • 针对部分通道进行数据增强处理
import numpy as np
import imgaug.augmenters as iaa# fake RGB images
images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)# add a random value from the range (-30, 30) to the first two channels of
# input images (e.g. to the R and G channels)
aug = iaa.WithChannels(channels=[0, 1],children=iaa.Add((-30, 30))
)images_aug = aug(images=images)

这篇关于图片数据不够快来试试使用imgaug增强数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524591

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例