ArcGIS空间分析——空间聚类模式分析(聚类模式、离散模式还是随机模式)

2023-12-22 12:48

本文主要是介绍ArcGIS空间分析——空间聚类模式分析(聚类模式、离散模式还是随机模式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

比如我们在判断要素属性在空间上是否是随机分布的,或者是聚集的,或者是不是离散的

就需要考虑要素的空间相关关系

如果您在景观分布(或空间数据)中发现了空间结构(如聚类),就证明某些基础空间过程在发挥作用,而这方面通常正是地理学者或 GIS 分析人员所最为关注的。

简单利用ArcGIS分析空间全局自相关和空间局部自相关关系

在这里插入图片描述

判断空间全局聚集特征

全局 Moran’s I

指数说明:
Moran’s I指数是运用最为广泛的全局指数之一,它通常使用单一属性来反映研究区域中邻近地区是相似、相异还是相互独立,判断该属性值在空间上是否存在聚集特征,进而反应其均等化程度。
工具:

在给定一组要素及相关属性的情况下,该工具评估所表达的模式是聚类模式、离散模式还是随机模式。
z 得分和 p 值是统计显著性的量度,用来判断是否拒绝零假设。对于此工具,零假设表示与要素相关的值随机分布。

使用 z 得分或 p 值指示统计显著性时,如果 Moran’s I 指数值为正则指示聚类趋势,如果 Moran’s I 指数值为负则指示离散趋势, Moran’s I 指数值为零则表示数据是随机分布的。
注意:最好使用投影数据

如图:
Moran’s I 指数值为0.848,表示数据是空间聚类的。
那么z-score和p-value怎么解读呢?

ArcGIS官方说明文档:
大多数统计检验在开始时都首先确定一个零假设。模式分析工具所返回的 z 得分和 p 值可帮助您判断是否可以拒绝零假设。

p 值表示概率。对于模式分析工具来说,p 值表示所观测到的空间模式是由某一随机过程创建而成的概率。当 p 很小时,意味着所观测到的空间模式不太可能产生于随机过程(小概率事件),因此您可以拒绝零假设。

Z 得分表示标准差的倍数。例如,如果工具返回的 z 得分为 +2.5,我们就会说,结果是 2.5 倍标准差。如下所示,z 得分和 p 值都与标准正态分布相关联。

要拒绝零假设,您必须对所愿承担的可能做出错误选择(即错误地拒绝零假设)的风险程度做出主观判断。因此,请先选择一个置信度,然后再执行空间统计。典型的置信度为 90%、95% 或 99%。这种情况下,99% 的置信度是最保守的,这表示您不愿意拒绝零假设,除非该模式是由随机过程创建的概率确实非常小(低于 1% 的概率)
在这里插入图片描述
那么上面的值在2.58以上,表示显著性极高。p值为零,置信度在99%以上。

这个报告结果怎么查看呢?
在这里插入图片描述

判断空间局部聚集特征

局部 Maran’s I(local Maran’s I)

说明:

给定一组加权要素,使用 Anselin Local Moran’s I 统计量来识别具有统计显著性的热点、冷点和空间异常值。正值 I 表示要素具有包含同样高或同样低的属性值的邻近要素;该要素是聚类的一部分。负值 I 表示要素具有包含不同值的邻近要素;该要素是异常值。
在这里插入图片描述
工具:

结果说明:
生成具有统计显著性的高值 (HH) 聚类、低值 (LL) 聚类、高值主要由低值围绕的异常值 (HL) 以及低值主要由高值围绕的异常值 (LH)。

这是上海市医疗服务可达性的空间局部相关关系图
通过图可分析高可达性和低可达性空间相关关系。

更多:“聚类和异常值分析 (Anselin Local Moran’s I)”的工作原理:http://desktop.arcgis.com/zh-cn/arcmap/latest/tools/spatial-statistics-toolbox/h-how-cluster-and-outlier-analysis-anselin-local-m.htm

这篇关于ArcGIS空间分析——空间聚类模式分析(聚类模式、离散模式还是随机模式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523993

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期