图像形态学轮廓处理人脸边缘轮廓提取(下巴、嘴唇)

2023-12-22 04:32

本文主要是介绍图像形态学轮廓处理人脸边缘轮廓提取(下巴、嘴唇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

形态学轮廓提取

  1. 流程分析
    这里写图片描述
    原图像imgA:
    这里写图片描述
    噪声滤除图像imgB:
    这里写图片描述
    腐蚀处理图像imgC:
    这里写图片描述
    相减操作图像imgD:
    这里写图片描述
    二值化处理结果imgE:
    这里写图片描述

  2. 原理分析:
    2.1膨胀:求像素的局部最大值
    将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行如下卷积操作:
    这里写图片描述
    2.2腐蚀:求像素的局部最小值
    将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行如下卷积操作:
    这里写图片描述
    (膨胀腐蚀原理详细可参见博客:http://blog.sina.com.cn/s/blog_6f57a7150100ooin.html 非常感谢博主的分享。)
    2.3噪声滤除:
    开运算: A∘ B=(A⊝B)⊕B
    闭运算: A·B=(A⊕B)⊝B
    噪声滤除: {[(A⊝B)⊕B]⊕B}⊝B=(A∘ B)·B
    这里写图片描述
    在上图中,(a)是原图像,外部有噪声块,内部有噪声孔,(b)为结构元素,尺寸大于所有噪声块和噪声孔,(c)是用(b)去腐蚀(a)的结果,可见,外部的噪声块被去除;之后用(b)去膨胀(c)两次,得到(e),此时已经去除了内部的噪声孔,在进行一次腐蚀操作,得到和原图一样大小的去噪图像(f)。

  3. 实验对比:
    3.1图像格式对比:
    参数设置:不进行噪声滤除,腐蚀2次,十字核,尺寸3*3
    二值图像;
    这里写图片描述
    灰度图像:
    这里写图片描述
    RGB图像:
    这里写图片描述

    3.2核样式对比:
    参数设置:RGB图像,不进行”噪声滤除”,腐蚀1次,尺寸5*5,二值化阈值100.
    这里写图片描述

    3.3核尺寸对比:
    参数设置:RGB图像,不进行”噪声滤除”,十字型核样式,腐蚀1次,二值化阈值100
    这里写图片描述

    3.4腐蚀次数对比:
    参数设置:RGB图像,不进行”噪声滤除”,十字型核样式,尺寸5*5,二值化阈值100
    这里写图片描述

    3.5噪声滤除强度对比:
    参数设置: RGB图像,十字型,腐蚀1次,核样式,尺寸5*5,二值化阈值100
    这里写图片描述

    3.6对比分析:
    图像格式:RGB格式提取轮廓效果较好,灰度和二值图像信息相对有限。
    核样式:十字型效果最佳,矩形和圆形容易造成噪点。
    核尺寸:尺寸过小,轮廓提取不完整;尺寸过大,容易出现噪点。
    腐蚀次数:腐蚀次数过小,轮廓提取不完整;次数过多,容易出现噪点,且轮廓边缘强度过大。
    噪声滤除:影响把图像轮廓深度信息提取。(标红区域)

  4. 代码:

morphology.h

#pragma once
#include "stdafx.h"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/opencv.hpp>
#include <iostream>
using 

这篇关于图像形态学轮廓处理人脸边缘轮廓提取(下巴、嘴唇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/522617

相关文章

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结

Python使用python-docx实现自动化处理Word文档

《Python使用python-docx实现自动化处理Word文档》这篇文章主要为大家展示了Python如何通过代码实现段落样式复制,HTML表格转Word表格以及动态生成可定制化模板的功能,感兴趣的... 目录一、引言二、核心功能模块解析1. 段落样式与图片复制2. html表格转Word表格3. 模板生

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

SpringBoot项目中Redis存储Session对象序列化处理

《SpringBoot项目中Redis存储Session对象序列化处理》在SpringBoot项目中使用Redis存储Session时,对象的序列化和反序列化是关键步骤,下面我们就来讲讲如何在Spri... 目录一、为什么需要序列化处理二、Spring Boot 集成 Redis 存储 Session2.1