yolov2 推理测试 - 模型转换❤️darknet 转 ncnn❤️【yolov2之darknet】

2023-12-21 22:38

本文主要是介绍yolov2 推理测试 - 模型转换❤️darknet 转 ncnn❤️【yolov2之darknet】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本博文基本按照 YOLOv2 darknet 官方教程,对预训练模型 展开测试,简单记录


YOLOv2 模型转 ncnn 部分遇到报错,本博文未做处理;对这部分有兴趣可参考


yolov3(darknet )训练 - 测试 - 模型转换❤️darknet 转 ncnn 之C++运行推理❤️【yolov3 实战一览】

文章目录

    • 🥇 基础信息
    • 📕 运行过程如下【darknet 模型测试】
        • 下载仓库代码
        • make 【基础环境编译】
        • 下载模型
        • run the detector【测试 dog.jpg】
        • run the detector【测试二 horses.jpg 】
        • yolov2-tiny-voc.weights 测试
    • 📘 darknet 版本 yolo2 转 ncnn【darknet2ncnn】
    • 📙 pytorch 版本 yolo2 转 ncnn


🥇 基础信息


  • yolov2【yolo-9000】 来自 2016 年,至今已有 pytorch、keras、darknet 等多个框架的训练版本
  • 本博文围绕 官方 darknet 模型进行测试 和 ncnn 尝试转换

依照如下 darknet/yolov2 官网 依次运行即可


https://pjreddie.com/darknet/yolov2/

1-0


📕 运行过程如下【darknet 模型测试】


下载仓库代码
git clone https://github.com/pjreddie/darknet
cd darknet
make 【基础环境编译】
make
# 输出如下:
mkdir -p obj
mkdir -p backup
mkdir -p results
gcc -Iinclude/ -Isrc/ -Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -c ./src/gemm.c -o obj/gemm.o...
下载模型

wget 命令下载 或者 手动到浏览器下载

 wget https://pjreddie.com/media/files/yolov2.weights--2021-10-09 14:52:58--  https://pjreddie.com/media/files/yolov2.weights
Resolving pjreddie.com (pjreddie.com)... 128.208.4.108
Connecting to pjreddie.com (pjreddie.com)|128.208.4.108|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 203934260 (194M) [application/octet-stream]
Saving to: ‘yolov2.weights’yolov2.weights                                                100%[================================================================================================================================================>] 194.49M   161KB/s    in 8m 48s  2021-10-09 15:01:46 (377 KB/s) - ‘yolov2.weights’ saved [203934260/203934260]# 或者 
wget https://pjreddie.com/media/files/yolov2-tiny-voc.weights
run the detector【测试 dog.jpg】
./darknet detect cfg/yolov2.cfg yolov2.weights data/dog.jpg# 输出如下
layer     filters    size              input                output0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32  0.639 BFLOPs1 max          2 x 2 / 2   608 x 608 x  32   ->   304 x 304 x  322 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64  3.407 BFLOPs3 max          2 x 2 / 2   304 x 304 x  64   ->   152 x 152 x  644 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs5 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs6 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs7 max          2 x 2 / 2   152 x 152 x 128   ->    76 x  76 x 1288 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs9 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs10 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs11 max          2 x 2 / 2    76 x  76 x 256   ->    38 x  38 x 25612 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs13 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs14 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs15 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs16 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs17 max          2 x 2 / 2    38 x  38 x 512   ->    19 x  19 x 51218 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs19 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs20 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs21 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs22 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs23 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024  6.814 BFLOPs24 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024  6.814 BFLOPs25 route  1626 conv     64  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x  64  0.095 BFLOPs27 reorg              / 2    38 x  38 x  64   ->    19 x  19 x 25628 route  27 2429 conv   1024  3 x 3 / 1    19 x  19 x1280   ->    19 x  19 x1024  8.517 BFLOPs30 conv    425  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 425  0.314 BFLOPs31 detection
mask_scale: Using default '1.000000'
Loading weights from yolov2.weights...Done!
data/dog.jpg: Predicted in 10.937355 seconds.
dog: 82%
truck: 64%
bicycle: 85%

2-1

run the detector【测试二 horses.jpg 】
./darknet detect cfg/yolov2.cfg yolov2.weights data/horses.jpg # 输出如下mask_scale: Using default '1.000000'
Loading weights from yolov2.weights...Done!
data/horses.jpg: Predicted in 11.372653 seconds.
horse: 91%
horse: 84%
horse: 62%

2-2

yolov2-tiny-voc.weights 测试
./darknet detector test cfg/voc.data cfg/yolov2-tiny-voc.cfg yolov2-tiny-voc.weights data/dog.jpg# 输出如下layer     filters    size              input                output0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  162 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32  0.399 BFLOPs3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  324 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64  0.399 BFLOPs5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  646 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128  0.399 BFLOPs7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 1288 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256  0.399 BFLOPs9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 25610 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 51212 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024  3.190 BFLOPs14 conv    125  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 125  0.043 BFLOPs15 detectionmask_scale: Using default '1.000000'
Loading weights from yolov2-tiny-voc.weights...Done!
data/dog.jpg: Predicted in 1.149598 seconds.
dog: 78%
car: 55%
car: 50%

预测图像效果如下

2-3


📘 darknet 版本 yolo2 转 ncnn【darknet2ncnn】


darknet2ncnn

./darknet2ncnn yolov2.cfg yolov2.weights yolov2-darknet.param yolov2-darknet.bin 1# 输出如下Loading cfg...
Loading weights...
Converting model...
77 layers, 78 blobs generated.
NOTE: The input of darknet uses: mean_vals=0 and norm_vals=1/255.f.
NOTE: Remember to use ncnnoptimize for better performance.# 或者./darknet2ncnn yolov2-tiny-voc.cfg yolov2-tiny-voc.weights yolov2-darknet.param yolov2-darknet.bin 1Loading cfg...
Loading weights...
Converting model...
33 layers, 33 blobs generated.
NOTE: The input of darknet uses: mean_vals=0 and norm_vals=1/255.f.
NOTE: Remember to use ncnnoptimize for better performance.

ncnnoptimize 优化报错如下 【yolov2.weights 和 yolov2-tiny-voc.weights 转 ncnn 遇到一样的问题】

 ./ncnnoptimize darknet/yolov2-darknet.param darknet/yolov2-darknet.bin yolov2-darknet-opt.param yolov2-darknet-opt.bin 0# 运行报错,输出如下ParamDict parse value failed
ParamDict load_param 69 26_211_bn_leaky failed
parse top_count failed
load_model error at layer 69, parameter file has inconsistent content.
Segmentation fault (core dumped)

原因分析如下,【暂无法处理】

3-1


📙 pytorch 版本 yolo2 转 ncnn


ncnn 官方支持的 yolo2 模型转换貌似是 pytorch 版本


https://github.com/longcw/yolo2-pytorch


中间遇到 pytorch 版本过低的问题,因此没有继续下去

  • 一个报错的参考解决方法链接:ImportError: torch.utils.ffi is deprecated

4-1


遇到未知报错的我

9-8


这篇关于yolov2 推理测试 - 模型转换❤️darknet 转 ncnn❤️【yolov2之darknet】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521728

相关文章

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

Java如何将文件内容转换为MD5哈希值

《Java如何将文件内容转换为MD5哈希值》:本文主要介绍Java如何将文件内容转换为MD5哈希值的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java文件内容转换为MD5哈希值一个完整的Java示例代码代码解释注意事项总结Java文件内容转换为MD5

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j