【深度学习入门项目】给学妹换个风格,画风突变【❤️CVPR 2020 风格迁移之NICE-GAN❤️】

本文主要是介绍【深度学习入门项目】给学妹换个风格,画风突变【❤️CVPR 2020 风格迁移之NICE-GAN❤️】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

❤️【深度学习入门项目】❤️ 之 【风格迁移】 初识 | 🚀学会【对抗训练】,你和学妹便不会再有尴尬🚀


❤️ 【带你了解】❤️


  • ❤️ 风格迁移 ========》一键换装
  • 💙 人生多一点尝试 ===》画风突变

文章目录

    • 🔔 基础信息
    • 🎉 git 官方 环境依赖如下:
    • 📢 环境搭建
    • 🎄 项目结构
      • 💜 加入数据集
      • 💜 训练参数设置
    • 🎄 训练和测试
      • 💜 Train
      • 💜 Test
    • 💬 备注
    • 👋 可能遇到的报错
    • 🚀 给学妹换个风格 🚀
      • 💜 训练分析
      • 💜 学妹还是有的
    • 🍖 训练代码+数据分享
    • 🚀🚀 文末专栏推荐部分 🚀🚀
    • ❤️ 当生成器和判别器趋于平衡,那便是爱情 💜


🔔 基础信息


  • Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
  • 《重用判别器进行编码:实现无监督的图像到图像翻译》
  • https://arxiv.org/pdf/2003.00273.pdf
  • 论文精简翻译
  • 官方 PyTorch 实现 – https://github.com/alpc91/NICE-GAN-pytorch

🎉 git 官方 环境依赖如下:


gitHub 官方

1


📢 环境搭建


  • 服务器:ubuntu1~18.04 Quadro RTX 5000 16G
  • CUDA版本 V10.0.130
conda create -n nice python=3.6.9conda activate nicepip install torch==1.1.0pip install torchvision==0.3.0
或者(建议使用 conda 来安装)
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorchpip install pillow==5.2.0pip install opencv-pythonpip install scipy
pip install thop

🎄 项目结构


 git clone https://github.com/alpc91/NICE-GAN-pytorch.gitcd NICE-GAN-pytorchcd dataset/

💜 加入数据集

1-0

💜 训练参数设置

1-1


🎄 训练和测试


💜 Train

# 显卡16G不够用,所以设置  --light True python main.py --dataset horse2zebra --light True# 指定多卡训练的方式如下CUDA_VISIBLE_DEVICES=2,3 python main.py --dataset horse2zebra --light True# nohup 把训练进程放到后台nohup python main.py --dataset horse2zebra --light True &

90分钟 训练 5000 个epoch ,训练效果如下

1-2

💜 Test

python main.py --dataset horse2zebra --phase test  --light True

测试运行输出如下

python main.py --dataset horse2zebra --phase test  --light True# 测试运行输出如下number of epochs must be larger than or equal to one##### Information #####
# light :  True
# dataset :  horse2zebra
# batch_size :  1
# iteration per epoch :  300000
# the size of image :  256
# the size of image channel :  3
# base channel number per layer :  64##### Generator #####
# residual blocks :  6##### Discriminator #####
# discriminator layers :  7##### Weight #####
# adv_weight :  1
# cycle_weight :  10
# recon_weight :  10
-----------------------------------------------
[INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>.
[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>.
[INFO] Register count_relu() for <class 'torch.nn.modules.activation.LeakyReLU'>.
[Network disA] Total number of parameters:  93.749M
[Network disA] Total number of FLOPs:  12.013G
-----------------------------------------------
[INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>.
[INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>.[Network gen2B] Total number of parameters:  16.192M
[Network gen2B] Total number of FLOPs:  67.552G
-----------------------------------------------
5000 [测试使用模型的迭代次数]dataset/horse2zebra/testA/n02381460_1000.jpg
dataset/horse2zebra/testA/n02381460_1010.jpg
...

1-3


💬 备注


  • 该模型训练中一次保存,大小 1.2 个G
  • –batch_size == 1 时,GPU 占用 7679MiB
  • –batch_size == 2 时,GPU 占用 12473MiB
  • –batch_size == 4 时,16G 的GPU就不够用啦

👋 可能遇到的报错


单卡训练,NICE-GAN full version 训练, 【16G】GPU 不够用

  • CUDA_VISIBLE_DEVICES=3 python main.py --dataset horse2zebra
RuntimeError: CUDA out of memory. Tried to allocate 1024.00 MiB (GPU 0; 15.75 GiB total capacity; 13.78 GiB already allocated; 782.44 MiB free; 499.74 MiB cached)

解决方法如下

  • 经验证换用 24 G 以上更大内存的 GPU 进行训练,不会遇到该错误,即进行【NICE-GAN full version】训练
  • 训练时,追加参数 --light True 即进行【NICE-GAN light version】训练

🚀 给学妹换个风格 🚀


这里使用 【梵高油画和现实风景图像】构成的数据集进行 50万 iteration 训练

nohup python main.py --dataset vangogh2photo --light True &# 训练时长,最终定格在 5天

训练结束输出如下

[499995/500000] time: 431994.8614 d_loss: 2.32049370, g_loss: 3.90420341
[499996/500000] time: 431995.4892 d_loss: 2.04860115, g_loss: 3.71788430
[499997/500000] time: 431996.1223 d_loss: 2.22972393, g_loss: 4.25117588
[499998/500000] time: 431996.7609 d_loss: 2.36788273, g_loss: 5.42507362
[499999/500000] time: 431997.3897 d_loss: 2.53704023, g_loss: 4.05708218
[500000/500000] time: 431998.0172 d_loss: 2.21194649, g_loss: 4.53932619
current D_learning rate:-1.7075100951256253e-16
current G_learning rate:-1.7075100951256253e-16[*] Training finished!

💜 训练分析

可以看到,默认每隔10w iteration 保存一次模型,50w 训练只保存了 5次模型
这 5 次保留的模型经测试发现,效果都无法让人心动


意外翻车,原因分析如下

  • Gan 网络的模型训练本身就有很多不稳定性、不确定性存在
  • 改进策略,数据集 trainA 和 trainB 风格尽量一致
  • 训练时,建议每隔 1 w 或者 5k iteration 保存一次模型
  • 这样可以得到多个生成模型,然后一一测试,也许会有惊喜
  • 对于 NiceGAN 而言,实测应用,模型训练基本是这样一个思路
  • 只能说,iteration 次数越多,理论上训练效果相对会更好,但是实际应用中,效果好的模型未必就是训练次数最大的那次得到的模型

2-1

💜 学妹还是有的

论数据集风格统一的重要性


【❤️下次,一定,让你更美❤️】

2-3


🍖 训练代码+数据分享


💜【把训练数据 + 代码分享给大家】💜

链接:https://pan.baidu.com/s/1zNR8TcXmQU7_nCB20Rqzmw 
提取码:2021

🚀🚀 文末专栏推荐部分 🚀🚀


  • 🎄如果感觉文章看完了不过瘾,还想更进一步,那么可以来我的其他 专栏 看一下哦~
  • ❤️ 图像风格转换 —— 代码环境搭建 实战教程【关注即可阅】!
  • 💜 图像修复-代码环境搭建-知识总结 实战教程 【据说还行】
  • 💙 超分重建-代码环境搭建-知识总结 解秘如何让白月光更清晰【脱单神器】
  • 💛 YOLO专栏,只有实战,不讲道理 图像分类【建议收藏】!
  • 🎄 个人整理的Cuda系列 Linux安装教程【适合小白进阶】
  • 💜 ubuntu18给当前用户安装cuda11.2 图文教程 | 配置cuDNN8.1 |
  • 💜 Linux服务器下给当前用户安装自己的CUDA10.0
  • 💜 Linux下cuda10.0安装Pytorch和Torchvision
  • 💜 Linux 可以安装多个版本的Cuda 吗 | 给我一台新的服务器,我会怎么安排 Cuda
  • 💜 查看CUDA和cuDNN的版本号

❤️ 当生成器和判别器趋于平衡,那便是爱情 💜


9-7

9-8


这篇关于【深度学习入门项目】给学妹换个风格,画风突变【❤️CVPR 2020 风格迁移之NICE-GAN❤️】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521711

相关文章

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv