管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜E

2023-12-21 21:01

本文主要是介绍管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜E,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

老老规矩,看目录,平均每年2E,跟2D一样,D是全对,E是全错,侧面也看出10道题,大概是3A/B,3C,2D,2E,其实还是蛮平均的。但E为1道的情况居多。

第20题如果要硬猜,要不就是留给E吧
在这里插入图片描述
再把其他年份的第20题找出来,选了A或D,也就是说,第20题,验证了A的有效性,无效,就直接选E,有效,就还得验证B,B有效,就选D。
在这里插入图片描述
最后,第20题是分水岭,前面除了第17题,其他不大可能选E。即第20题之前若判断A,B都不充分,那么就选C。或者就把所有感觉要联立都选C,从C中找E,哈哈,不过这个概率说不定更低。

文章目录

    • 2023
      • 真题(2023-20)-E-不要被选项迷惑,不是取值范围,是两个不同未知数;-选项特点:一个大于号,一个小于号,两个未知数;
      • 真题(2023-21)-E-选项特点:两个已知X的值;
    • 2022
      • 真题(2022-20)-E;选项特点-一个已知,一个只有;
      • 真题(2022-23)-E-容易误判C,因为【一个等号+一个不等号】
    • 2021
      • 真题(2021-17)-E-要不要联立-要联立选C;(我爱说实话)两个条件看起来确实很像需要联立的样子
      • 真题(2021-23)-E-易误判选C,因为【一个不等号,一个等号】
    • 2020
      • 真题(2020-20)-E
      • 真题(2020-22)-E-条件轮换对称+结论要求具体某个量(不对称)-条件未知量轮换对称:轮换对称:a→b→c→d轮换位置后条件表达式不变;很容易误选C,因为【一个等号+一个不等号】
    • 2019
      • 真题(2019-22)-E选项蒙猜-特别难的结论就直接过;(我爱说实话,这个第一眼也像可以联合)
    • 2018
      • 真题(2018-21)-E;(我爱说实话,这个第一眼也像可以联合)
    • 2017
      • 真题(2017-20)-E;选项特点:两个已知X的值(这个特点没啥用,因为ABCD都出现)
    • 2016
      • 真题(2016-20)-E-看起来好像联合可以出答案的样子
    • 2015
      • 真题(2015-20)-E-看起来好像联合可以出答案的样子;-选项特点:和等式,积等式。
    • 2014
    • 2013
      • 真题(2013-17)-E-特别难的结论选E(我爱说实话,考试想不到这个点);选E选项往往不需要联合,联合的选C的几率高

选E选项(条件1和条件2单独都不充分,联合起来也不充分)
对学员的掌握程度要求更高
判断误差的罪魁祸首,是E,在不确定的情况下,宁愿把E选成别的选项,也不要把别的选项选成E。
1.往往不需要复杂的推理或计算。通过特殊反例,常识,逻辑关系可看出来。
2.选E选项往往不需要联合,联合的选C的几率高。
真题:2013年17题;2012年21题;

自从13年出现“可确定”型题目,E选项绝大部分出自此类题目
1.特别难的结论就直接过
真题:19年22题,13年01,17题
2.不满足“要啥给啥”原则
(1)条件(比例关系)与所求结论(具体量)信息类型不匹配;
(2)条件(范围)与所求结论(具体量)信息类型不匹配;
真题:13年10月20题(缺少相关年份真题)
3.条件轮换对称+结论要求具体某个量(不对称)
条件未知量轮换对称;轮换对称:a→b→c→d轮换位置后条件表达式不变;
真题:20年22题。

2023

真题(2023-20)-E-不要被选项迷惑,不是取值范围,是两个不同未知数;-选项特点:一个大于号,一个小于号,两个未知数;

-几何-解析几何;

在这里插入图片描述
在这里插入图片描述

真题(2023-21)-E-选项特点:两个已知X的值;

-应用题-路程
在这里插入图片描述

在这里插入图片描述

2022

真题(2022-20)-E;选项特点-一个已知,一个只有;

-简单算术题
20.将 75 名学生分成 25 组,每组 3 人,则能确定女生人数。
(1)已知全是男生的组数和全是女生的组数。
(2)只有1男的组和只有1女的组数相等。

在这里插入图片描述

真题(2022-23)-E-容易误判C,因为【一个等号+一个不等号】

-数列-等比数列-等比中项;+一元二次函数
23.已知𝑎,𝑏为实数,则能确定𝑎的值。
(1)𝑎,𝑏,𝑎 + 𝑏成等比数列。
(2)𝑎(𝑎 + 𝑏) > 0。
在这里插入图片描述

2021

真题(2021-17)-E-要不要联立-要联立选C;(我爱说实话)两个条件看起来确实很像需要联立的样子

-应用题-工程
17.清理一块场地,则甲乙丙三人能在2天内完成。
(1)甲乙两人需要3天完成。
(2)甲丙两人需要4天完成。
在这里插入图片描述

真题(2021-23)-E-易误判选C,因为【一个不等号,一个等号】

-应用题-路程
23.某人开车去上班,有一段路因维修限速通行,则可以算出此人上班的距离。
(1)路上比平时多用了半小时。
(2)已知维修路段的通行速度。
在这里插入图片描述

2020

真题(2020-20)-E

-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
20、共有n 辆车,则能确定人数。
(1)若每辆车 20 座,1 车未满。
(2)若每辆车 12 座,则少 10 个座。
在这里插入图片描述
在这里插入图片描述

真题(2020-22)-E-条件轮换对称+结论要求具体某个量(不对称)-条件未知量轮换对称:轮换对称:a→b→c→d轮换位置后条件表达式不变;很容易误选C,因为【一个等号+一个不等号】

-E-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
22、已知甲、乙、丙三人共捐款 3500 元,则能确定每人的捐款金额。
(1)三人的捐款金额各不相同。
(2)三人的捐款金额都是 500 的倍数。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2019

真题(2019-22)-E选项蒙猜-特别难的结论就直接过;(我爱说实话,这个第一眼也像可以联合)

-E-算术-整除
22、设 n 为正整数,则能确定n 除以 5 的余数。
(1) 已知 n 除以 2 的余数。
(2) 已知n 除以 3 的余数。
在这里插入图片描述
在这里插入图片描述

2018

真题(2018-21)-E;(我爱说实话,这个第一眼也像可以联合)

-应用题-简单算术
21.甲购买了若干件 A 玩具,乙购买了若干件 B 玩具送给幼儿园,甲比乙少花了 100 元,则能确定甲购买的玩具件数。
(1)甲与乙共购买了 50 件玩具。
(2)A 玩具的价格是 B 玩具的 2 倍。
在这里插入图片描述

E。本题考查方程组相关知识。假设甲的玩具价格为每件x元,共买了A件,乙的玩具价格为每件y元,共买了B件,题干前提条件为Ax+100=By,其中,x,y,A,B均为未知数。条件(1)为A+B=50 ,条件(2)为x=2y,显然,无论条件(1)、(2)单独,还是联合,未知数个数都多于方程个数,无唯一解,不能确定未知数A的值,都不充分。
在这里插入图片描述
在这里插入图片描述

2017

真题(2017-20)-E;选项特点:两个已知X的值(这个特点没啥用,因为ABCD都出现)

-比例应用题-增长率
20.能确定某企业产值的月平均增长率。
(1)已知一月份的产值。
(2)已知全年的总产值答案。
在这里插入图片描述

在这里插入图片描述
答案应该是E。(否则2017年没有选E)
首先理解“月平均增长率x”:只与第一个月和最后一个月的产值有关。如:一月a、二、三、四…十一、十二月3a: a ( 1 + x ) 11 = 3 a a(1+x)^{11}=3a a(1+x)11=3a,得 ( 1 + x ) 11 = 3 (1+x)^{11}=3 (1+x)11=3,得: x = 3 11 − 1 x=\sqrt[11]{3}-1 x=113 1
∴(2)全年总产值是无关的。更改为“12月的产值”,才选C。

2016

真题(2016-20)-E-看起来好像联合可以出答案的样子

-应用题-溶液
20.将 2 升甲酒精和 1 升乙酒精混合,得到丙酒精,则能确定甲、乙两种酒精的浓度。
(1)1 升甲酒精和 5 升乙酒精混合后的浓度是丙酒精浓度的 1 2 \frac{1}{2} 21倍。
(2)1 升甲酒精和 2 升乙酒精混合后的中毒是丙酒精浓度的 2 3 \frac{2}{3} 32倍。
在这里插入图片描述

2015

真题(2015-20)-E-看起来好像联合可以出答案的样子;-选项特点:和等式,积等式。

-数列-等差数列
20.设{ a n a_n an}是等差数列,则能确定数列{ a n a_n an}
(1) a 1 + a 6 = 0 a_1+a_6=0 a1+a6=0
(2) a 1 a 6 = − 1 a_1a_6=-1 a1a6=1
在这里插入图片描述

在这里插入图片描述

2014

我14年没有E,没人来管管的吗

2013

真题(2013-17)-E-特别难的结论选E(我爱说实话,考试想不到这个点);选E选项往往不需要联合,联合的选C的几率高

-E-算术-质合数
17. p = m q + 1 p = mq + 1 p=mq+1为质数。
(1) m m m为正整数, q q q为质数。
(2) m , q m,q m,q均为质数。
在这里插入图片描述

在这里插入图片描述

这篇关于管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜E的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521488

相关文章

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

在Node.js中使用.env文件管理环境变量的全过程

《在Node.js中使用.env文件管理环境变量的全过程》Node.js应用程序通常依赖于环境变量来管理敏感信息或配置设置,.env文件已经成为一种流行的本地管理这些变量的方法,本文将探讨.env文件... 目录引言为什么使php用 .env 文件 ?如何在 Node.js 中使用 .env 文件最佳实践引

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

Linux之UDP和TCP报头管理方式

《Linux之UDP和TCP报头管理方式》文章系统讲解了传输层协议UDP与TCP的核心区别:UDP无连接、不可靠,适合实时传输(如视频),通过端口号标识应用;TCP有连接、可靠,通过确认应答、序号、窗... 目录一、关于端口号1.1 端口号的理解1.2 端口号范围的划分1.3 认识知名端口号1.4 一个进程