yolo-nas无人机高空红外热数据小目标检测(教程+代码)

2023-12-21 19:01

本文主要是介绍yolo-nas无人机高空红外热数据小目标检测(教程+代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  • YOLO-NAS是目前最新的YOLO目标检测模型。
  • 从一开始,它就在准确性方面击败了所有其他 YOLO 模型。
  • 与之前的 YOLO 模型相比,预训练的 YOLO-NAS 模型能够以更高的准确度检测更多目标。
  • 但是我们如何在自定义数据集上训练 YOLO NAS?

这将是我们本文的目标——在自定义数据集上训练不同的 YOLO NAS 模型。
在这里插入图片描述

YOLO-NAS训练

YOLO-NAS 的主要主张是它可以比以前的模型更好地检测更小的物体。尽管我们可以运行多个推理实验来分析结果,但在具有挑战性的数据集上对其进行训练将使我们有更好的理解。为此,我们将使用三个可用的预训练 YOLO-NAS 模型运行四个训练实验。为此,我们选择无人机热成像检测数据集。

在实验过程中,我们将遍历 YOLO-NAS 的完整训练流程。

  1. 用于训练 YOLO NAS 的物体检测数据集
  2. 在自定义数据集上训练 YOLO NAS
  3. 微调 YOLO NAS 模型
  4. 使用经过训练的 YOLO NAS 模型对测试图像进​​行推理
  5. YOLO NAS 训练模型视频推理结果
  6. 结论

训练 YOLO NAS 的物体检测数据集

用于训练 YOLO NAS 的物体检测数据集
我们先来熟悉一下无人机高空红外热数据集。

它包含夜间无人机热图像。鉴于无人机的高空记录,大多数物体看起来都很小。这使得该数据集对于大多数目标检测模型来说都难以解决。然而,它是完美的自定义数据集来训练 YOLO-NAS 以检查其在小物体上的准确性。

该数据集包含 5 个对象类别的 2898 张热图像:

  • 自行车
  • 其他车辆
  • 不在乎

数据集已包含训练、验证和测试分割。有 2008 个训练样本、287 个验证样本和 571 个测试样本。该数据集已经以 YOLO 注释格式存在。

以下是数据集中的一些未注释的地面实况图像。
在这里插入图片描述
很明显,除了汽车之外,如果没有适当的注释,人眼无法看到地面上的其他物体。

要了解每个对象的位置,请查看一些带注释的图像
在这里插入图片描述

接下来,我们将深入研究本文的编码部分。下载本文的代码后,您将发现三个笔记本。

YOLO_NAS_Fine_Tuning.ipynb
YOLO_NAS_Large_Fine_Tuning.ipynb
inference.ipynb
YOLO_NAS_Fine_Tuning.ipynb我们将非常详细地浏览这些笔记本。这两个包含在自定义数据集上训练 YOLO NAS 以及稍后使用经过训练的模型运行推理所需的所有步骤。培训笔记本包含下载数据集的代码。

以下代码将训练三个 YOLO NAS 模型:

YOLO NAS (小)
YOLO NAS m(中型)
YOLO NAS l (大)
在开始之前,您可以安装super-gradients我们在整个训练和推理过程中需要的软件包。尽管笔记本包含执行此操作的命令,您也可以使用以下命令安装它:

pip install

数据集下载和目录结构
接下来的几个代码块下载数据集并将其解压到当前目录,我们将在此处跳过。所有笔记本和数据集都存在于父数据集目录中,其结构如下

hit-uav
├── dataset.yaml
├── images
│   ├── test
│   ├── train
│   └── val
└── labels├── test├── train└── val

YOLO NAS模型训练

由于我们正在训练三个不同的模型,因此我们需要稍微自动化该过程。我们可以定义一个包含三个模型名称的列表,并根据该列表设置检查点目录。这还将加载适当的模型,因为列表中的模型名称与 API 中的模型名称相匹配super-gradients。

models_to_train = ['yolo_nas_s','yolo_nas_m','yolo_nas_l'
]CHECKPOINT_DIR = 'checkpoints'for model_to_train in models_to_train:trainer = Trainer(experiment_name=model_to_train, ckpt_root_dir=CHECKPOINT_DIR)model = models.get(model_to_train, num_classes=len(dataset_params['classes']), pretrained_weights="coco")trainer.train(model=model, training_params=train_params, train_loader=train_data, valid_loader=val_data)

三个训练实验将依次运行,所有模型检查点将保存在各自的目录中。

YOLO NAS 训练参数

在我们开始微调过程之前,训练参数是最重要的组成部分。这是我们定义要训练的纪元数、要监控的验证指标以及学习率等的地方。、

models_to_train = ['yolo_nas_s','yolo_nas_m','yolo_nas_l'
]CHECKPOINT_DIR = 'checkpoints'for model_to_train in models_to_train:trainer = Trainer(experiment_name=model_to_train, ckpt_root_dir=CHECKPOINT_DIR)model = models.get(model_to_train, num_classes=len(dataset_params['classes']), pretrained_weights="coco")trainer.train(model=model, training_params=train_params, train_loader=train_data, valid_loader=val_data)

微调结果

在这里插入图片描述

YOLO NAS 模型对测试图像进​​行推理

该数据集包含一个测试分割,我们保留该测试分割用于推理目的。您可以执行笔记本中的代码单元inference.ipynb来运行推理实验。它促成了一些事情:

首先,它从检查点目录加载经过最佳训练的 YOLO NAS 权重。
然后它对测试图像运行推理。执行此操作时,代码会将推理结果保存在inference_results/images具有原始图像名称的目录中。
获得结果后,笔记本通过在预测图像上重叠地面实况注释来显示一组图像。
最后一步将告诉我们训练模型错过了哪些对象以及模型是否做出了错误的预测。

让我们通过可视化一些推理预测来开始我们的分析。
在这里插入图片描述

这篇关于yolo-nas无人机高空红外热数据小目标检测(教程+代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521130

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS