基于ASF-YOLO融合空间特征和尺度特征的新型注意力尺度序列融合模型开发构建涵洞隧道场景下墙壁建筑缺陷分割检测系统

本文主要是介绍基于ASF-YOLO融合空间特征和尺度特征的新型注意力尺度序列融合模型开发构建涵洞隧道场景下墙壁建筑缺陷分割检测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在ASF-YOLO提出之初,我们就进行了相应的实践开发,感兴趣的话可以自行移步阅读:

《基于ASF-YOLO融合空间特征和尺度特征的新型注意力尺度序列融合模型开发构建医学场景下细胞分割检测识别系统,以【BCC、DSB2018数据集为基准】》

本文的主要目的是想要基于ASF-YOLO开发构建在涵洞隧道场景下壁体类建筑的缺陷分割识别系统,首先看下实例效果:

相关涵洞隧道场景下的墙体缺陷分割实践感兴趣的话可以自行移步阅读:

《AI助力隧道等洞体类场景下水泥基建缺陷检测,基于DeeplabV3Plus开发构建洞体场景下壁体建筑缺陷分割系统》

《基于轻量级yolov5n开发构建涵洞场景下洞体墙体缺陷病害检测分割系统》

《基于轻量级YOLOv5s开发构建隧道基建裂痕、脱落等缺陷问题检测系统》

《基于yolov5全系列[n/s/m/l/x]不同参数量级模型开发构建隧道巡检场景下水泥建筑墙体缺陷病害检测分割系统》

《探索图像分辨率对于模型的影响,基于yolov5x开发构建桥洞、隧道、涵洞等水泥洞体建筑裂缝缺陷等检测识别系统》

《助力涵洞场景安全智能巡检,基于yolov7/yolov7x/yolov7e6e开发构建基体建筑缺陷问题检测识别系统》

ASF-YOLO框架结合了空间和尺度特征,实现了准确快速的细胞实例分割。基于YOLO分割框架,我们使用尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力,并使用三重特征编码器(TPE)模块来融合不同尺度的特征图以增加详细信息。我们进一步引入了一种通道和位置注意机制(CPAM)来集成SSFF和TPE模块,该模块专注于信息通道和空间位置相关的小对象,以提高检测和分割性能。在两个细胞数据集上的实验验证表明,所提出的ASFYOLO模型具有显著的分割精度和速度。在2018年数据科学碗数据集上,它实现了0.91的boxmAP、0.887的maskmAP和47.3 FPS的推理速度,优于最先进的方法。
官方论文在这里,如下所示:

YOLO框架一般由backbone、neck和head三个主要组件构成。backbone网络是卷积神经网络,用于从不同的粒度下提取图像特征。CSPDarknet53是基于YOLOv4进行改进的backbone网络,被用作YOLOv5的主干网络。它包含了C3模块(包括3个卷积层)和ConvBNSiLU模块。在YOLOv5和YOLOv8的backbone中,有5个级别的特征提取分支:P1、P2、P3、P4和P5,与YOLO网络的输出相关联。YOLOv5 v7和YOLOv8是基于YOLO的主流架构之一,不仅可以用于检测和分类任务,还可以处理分割任务。 

作者开发了一种新颖的特征融合网络架构,由两个主要组件网络组成,可以提供小目标分割的互补信息:
SSSF模块,它将来自多个尺度图像的全局或高级语义信息组合在一起;
TFE模块,它可以捕捉小目标目标的局部精细细节。将局部和全局特征信息相结合可以产生更准确的分割图。

为了识别密集重叠的小目标,一种方法是通过放大图像以参考和比较不同尺度下的形状或外观变化。然而,由于YOLO的backbone网络中的不同特征层具有不同的尺寸,传统的FPN融合机制只对小尺寸特征图进行上采样,并将其添加到前一层特征中,从而忽略了较大尺寸特征层中丰富的详细信息。为此,研究人员提出了TFE(Texture Feature Enhancement)模块,它将大、中、小尺寸的特征进行分离,并添加了较大尺寸的特征图,然后进行特征放大以增强详细特征信息。 

为了整合详细特征信息和多尺度特征信息,研究人员提出了CPAM(Channel and Position Attention Module)。CPAM的结构如图5所示,它由两个部分组成。第一个部分是通道注意网络,它从TFE(输入1)接收输入,用于提取不同通道中包含的代表性特征信息。第二个部分是位置注意网络,它接收来自通道注意网络和SSFF(输入2)的输出,并进行叠加,用于引入位置信息。通过这种方式,CPAM能够融合不同注意力机制,综合利用通道和位置信息,以提高目标识别的性能。

想要进一步了解论文详情,建议还是自行移步阅读原论文,这里就不再赘述了。

作者同时开源了项目,地址在这里,如下所示:

简单看下本文构筑的数据集:

实例标注内容如下所示:

2 0.6818181818181818 0.5457142857142857 0.6829545454545455 0.63 0.7 0.6328571428571429 0.9488636363636364 0.6328571428571429 0.9988636363636364 0.6342857142857142 0.9988636363636364 0.5485714285714286 0.9806818181818182 0.5471428571428572 0.9681818181818181 0.5371428571428571 0.95 0.55 0.9204545454545454 0.54 0.9011363636363636 0.5528571428571428 0.8715909090909091 0.5642857142857143 0.8443181818181819 0.56 0.8159090909090909 0.5528571428571428 0.7636363636363637 0.5371428571428571 0.7181818181818181 0.5485714285714286
0 0.10227272727272728 0.47285714285714286 0.11818181818181818 0.4785714285714286 0.13977272727272727 0.4785714285714286 0.1534090909090909 0.4785714285714286 0.17045454545454544 0.4828571428571429 0.18636363636363637 0.48142857142857143 0.20909090909090908 0.48142857142857143 0.24886363636363637 0.48142857142857143 0.2715909090909091 0.48714285714285716 0.2818181818181818 0.49142857142857144 0.31136363636363634 0.48857142857142855 0.3409090909090909 0.49 0.3704545454545455 0.49142857142857144 0.3886363636363636 0.49857142857142855 0.4193181818181818 0.5 0.43636363636363634 0.5071428571428571 0.46136363636363636 0.5085714285714286 0.49204545454545456 0.5071428571428571 0.5113636363636364 0.5128571428571429 0.5363636363636364 0.5157142857142857 0.5761363636363637 0.5128571428571429 0.6022727272727273 0.5142857142857142 0.6238636363636364 0.5171428571428571 0.634090909090909 0.5285714285714286 0.6534090909090909 0.5285714285714286 0.6806818181818182 0.5328571428571428 0.6863636363636364 0.5342857142857143 0.678409090909091 0.5371428571428571 0.6602272727272728 0.5342857142857143 0.6454545454545455 0.5342857142857143 0.634090909090909 0.5314285714285715 0.6181818181818182 0.5214285714285715 0.6056818181818182 0.5214285714285715 0.5795454545454546 0.5157142857142857 0.5659090909090909 0.5185714285714286 0.5238636363636363 0.5214285714285715 0.5136363636363637 0.5185714285714286 0.49204545454545456 0.5171428571428571 0.47045454545454546 0.5128571428571429 0.44545454545454544 0.5171428571428571 0.4238636363636364 0.5057142857142857 0.4102272727272727 0.5057142857142857 0.3886363636363636 0.5057142857142857 0.3659090909090909 0.4957142857142857 0.35 0.49714285714285716 0.31022727272727274 0.4928571428571429 0.2806818181818182 0.5 0.2556818181818182 0.48857142857142855 0.23295454545454544 0.49142857142857144 0.2 0.49 0.17386363636363636 0.48857142857142855 0.14545454545454545 0.48714285714285716 0.1215909090909091 0.48714285714285716

使用如下训练参数设置进行训练:

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5l-seg.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/segment/asf-yolo.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/bcc.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--noplots', action='store_true', help='save no plot files')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default='runs/train-seg', help='save to project/name')
parser.add_argument('--name', default='improve', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')# Instance Segmentation Args
parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')return parser.parse_known_args()[0] if known else parser.parse_args()

训练启动,日志输出如下:

训练完成如下:

等待训练完成后我们来看下具体的结果内容。

【F1】

【precision】

【recall】

【PR】

【混淆矩阵】

【Batch实例】

感兴趣的话也都可以自己动手实践一下!

这篇关于基于ASF-YOLO融合空间特征和尺度特征的新型注意力尺度序列融合模型开发构建涵洞隧道场景下墙壁建筑缺陷分割检测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519555

相关文章

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

关于MySQL将表中数据删除后多久空间会被释放出来

《关于MySQL将表中数据删除后多久空间会被释放出来》MySQL删除数据后,空间不会立即释放给操作系统,而是会被标记为“可重用”,以供未来插入新数据时使用,只有满足特定条件时,空间才可能真正返还给操作... 目录一、mysql数据删除与空间管理1.1 理解MySQL数据删除原理1.3 执行SQL1.3 使用

Java中接口和抽象类的异同以及具体的使用场景

《Java中接口和抽象类的异同以及具体的使用场景》文章主要介绍了Java中接口(Interface)和抽象类(AbstractClass)的区别和联系,包括相同点和不同点,以及它们在实际开发中的具体使... 目录一、接口和抽象类的 “相同点”二、接口和抽象类的 “核心区别”关键区别详解(避免踩坑)三、具体使

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注