[原创][R语言]股票分析实战[3]:周级别涨幅趋势的相关性

2023-12-21 03:52

本文主要是介绍[原创][R语言]股票分析实战[3]:周级别涨幅趋势的相关性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[简介]
常用网名: 猪头三
出生日期: 1981.XX.XX
QQ联系: 643439947
个人网站: 80x86汇编小站 https://www.x86asm.org
编程生涯: 2001年~至今[共22年]
职业生涯: 20年
开发语言: C/C++、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python
开发工具: Visual Studio、Delphi、XCode、Eclipse、C++ Builder
技能种类: 逆向 驱动 磁盘 文件
研发领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全
项目经历: 磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测

[序言]
经过上一篇文章:[原创][R语言]股票分析实战[2]:周级别涨幅趋势的相关性-CSDN博客, 我们发现了"频率(Freq)"与"涨幅(RC)"关系最密切, 看到这里, 如果是喜欢刨根问底的人, 就会去思考, 既然是最密切的, 那到底有多密切呢? 密切的程度是多少? 那么这篇文章是相当的重要也是非常关键的, 如果这个内容不理解, 那么对后期更深入的内容, 就会越看越糊涂.

[道歉]
本来预计本篇文章内容是写"如何通过图形进一步观察数据的相关性", 但是上一篇文章我竟然漏到了关键的内容, 也就是本章的内容: 最密切的两组数据, 那到底有多密切呢? 密切的程度是多少?

[学习这个概念, 我们不需要高深的数学理论, 我通篇用普通人能看懂的语言来描述]
要了解两组不同数据的密切程度, 需要通过一个叫"p-value"的东西, 中文翻译过来叫"P值". 那么这个所谓的"P值"能反应出什么结果呢?
1> 它的数值范围是 -1~1 之间, 如果数值接近于0, 那么就说明当前的两组数据密切程度越高.
2> 分析两组数据的密切程度(即P值), 首先计算公式会预先假设这两组数据是没有任何关系的, 也就是0密切度. 其实真正的数学术语是"零假设".
3> 当计算公式完成计算后,给出一个p-value=0.3(即P值=0.3),那么说明什么? 这里是重点, 大家睁大眼睛看如下描述:
    3.1> p-value=0.3 说明 两组数据没有相互关系, 没有密切关系 的 出现概率为0.3. 那么在参考标准:0.05 是一个常用标准分界线.  
    3.2> 由此可以得出, 两组数据的密切度很低, 也就说他们之间的关系不是很强.

如果看懂上面的描述了, 那么可以参考[原创][R语言]股票分析实战[2]:周级别涨幅趋势的相关性-CSDN博客这篇文章, 我们预判出来的结果是:  "频率(Freq)"与"涨幅(RC)"的密切关系度 比 "频率(Freq)"与"周1~周5(DW)" 高. 大家可能还不会相信这样的预判结果, 那么下面通过R语言一个简单的函数就能分析出来.

[通过R语言的psych包的corr.test()函数分析两组数据的相关性, 以及相关性的显著性(即p-value, 也就是P值)]

library(psych)
corr.test(stock_demo_rc_table_Freq, use="complete")

Call:corr.test(x = stock_demo_rc_table_Freq, use = "complete")
Correlation matrix 
        RC   DW  Freq
RC    1.00 0.00 -0.19
DW    0.00 1.00  0.05
Freq -0.19 0.05  1.00
Sample Size 
[1] 30
Probability values (Entries above the diagonal are adjusted for multiple tests.) 
      RC   DW Freq
RC   0.0 1.00 0.91
DW   1.0 0.00 1.00
Freq 0.3 0.79 0.00

 To see confidence intervals of the correlations, print with the short=FALSE option

上通过上面的红色数据部分, 可以很清晰的看出: "频率(Freq)"与"涨幅(RC)"的p-vaule值为0.3,  "频率(Freq)"与"周1~周5(DW)"为0.79, 虽然这2个数值都偏离的标准, 但是一个0.3,一个0.79, 按照前面的说法"如果数值无限接近于0, 那么就说明当前的两组数据密切程度越高.", 这个数据已经证明了: "频率(Freq)"与"涨幅(RC)"关系最密切, 那么今后也就是需要重点研究的对象.

[结尾]
这篇文章的内容是十分的重要的, 如果大家没看懂, 可以多看几遍, 最好能装上R语言, 进行验证和感受一下数据的奥秘. 只要你习惯去深究数据的细微变化, 那么炒股是不会亏钱的. 这点我是100%保证.
 

这篇关于[原创][R语言]股票分析实战[3]:周级别涨幅趋势的相关性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518559

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima