基于k6和python进行自动化性能测试

2023-12-20 21:04

本文主要是介绍基于k6和python进行自动化性能测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

import http from 'k6/http';
import { sleep } from 'k6';
export default function () {http.get('https://test-api.com');sleep(1);
}

当我们开发完成一个应用程序时,往往需要对其进行性能测试,以帮助我们更好的优化程序以及发现程序中的一些bug。在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

k6是一个开源工具,基于JavaScript可以编写k6的测试脚本,测试Web应用程序以及API的性能,支持HTTP等多种协议,可以很好地模拟各种高负载场景,充分验证程序稳定性和性能。k6支持Linux、MacOS等多个平台,通过k6官网根据提示即可在各个平台快速安装k6,终端输入k6 version出现如下显示说明安装成功。

以下是一个简单的k6测试脚本,通过k6的HTTP API模拟Get请求,并且休眠一秒钟:K

import http from 'k6/http';
import { sleep } from 'k6';
export default function () {http.get('https://test-api.com');sleep(1);
}

通过执行下面这行代码,运行脚本,即可对服务完成测试。

k6 run test-script.js

k6提供了丰富的功能,以下是k6常用的一些API,具体可以参考官网文档介绍:

- http.get(url, [options]):发送GET请求。
- http.post(url, body, [options]):发送POST请求。
- check(res, checks):检查响应是否符合预期。
- group(name, func):将一组请求分组并统计性能指标。
- sleep(duration):休眠指定的时间。

k6的测试结果包括以下一些指标,可以根据这些指标,更好的优化程序。

- VUs:虚拟用户的数量。
- Iterations:迭代次数。
- RPS:每秒钟的请求数。
- Duration:测试持续时间。
- Data Sent/Received:发送和接收的数据量。
- Checks:检查的数量。
- Status codes:响应状态码的数量。
- Errors:错误的数量。
- Latency distribution:延迟分布。

通过Python和k6你可以更加高效的完成符合自己要求的自动化测试,Python可以提供非常多的工具库,用来收集处理k6返回的结果。 我们可以编写以下k6测试脚本,并且通过Python去执行它,相关注释我已经标注出来,在handleSummary函数中,我们可以通过metrics来获取各种测试信息,具体如代码所示,可以参考官网关于metrics的介绍,同时自定义环境变量的使用也十分方便,可以参考代码中的使用方式。

import http from 'k6/http';
import { check, sleep} from 'k6';
import {Rate} from 'k6/metrics';
export default function() {#post请求所需要的body体let requestBody = {"xxx":["xxxxx"],"xxxx": __ENV.MyVar # MyVar为自定义的环境变量,可以通过__ENV调用,在执行脚本时可直接通过MyVar=xxx传值};#urlconst url = 'http://example.com';const payload = JSON.stringify(requestBody);const params = {headers: {'Content-Type': 'application/json',},timeout: '100s' #每个请求的超时时间};let res = http.post(url, payload, params);#检测结果是否是200OKcheck(res, { 'status is 200': (r) => r.status === 200 });
}
export function handleSummary(data) {#通过data.metrics中的字段可以获取你想要的一些信息,例如每个请求的持续时间和吞吐量const time = `${data.metrics.http_req_duration.values.avg.toFixed(3)}`;const rps = `${data.metrics.http_reqs.values.rate.toFixed(3)}`;const res = `${time} ${rps}`; console.log(res); # 利用console.log可以将内容打印到控制台return {stdout : res}; #输出到标准输出
}

如下是一个Python代码示例,相关代码已经注释,通过Python中的subprocess模块执行k6脚本,并且捕获k6脚本的输出,通过pandas库进行整理输出到excel中。还可以通过argparse库解析命令行参数传入k6脚本中,更加灵活,高效。

# -*- coding: utf-8 -*-
import subprocess
from alive_progress import alive_bar # 非常丰富的进度条工具库
from tqdm import tqdm # 进度条工具库
import pandas as pd # 可以用来处理文本excel,csv等
from collections import OrderedDict
import argparse # 用来解析命令行参数 
import time
print('测试时间 : ', time.strftime('%b %d %Y %H:%M:%S', time.gmtime(time.time())))
print("************开始测试啦! 祈祷不出错!**************")
# 需要测试的测试语句集合
test_examples = ["aaaaaaa","bbbbbbb","ccccccc"
]
dataMap = {'test': test_examples}
parser = argparse.ArgumentParser()
parser.add_argument("-d", default="60s", help="duration time", dest="duration_time") #解析命令行参数,控制测试时间
args = parser.parse_args()
print("每条语句测试时间 : ", args.duration_time)
vus = ['10', '20', '30', '40'] # 并发数集合 ,分别测试并发数为10,20,30,40的场景
cols_name = ['1-avg/ms', '1-rps/s', '10-avg/ms', '10-rps/s','20-avg/ms', '20-rps/s','50-avg/ms', '50-rps/s'] # excel的列名
# 循环测试,可以将多个需要测试的语句集合放入到dataMap中
for (name, data) in dataMap.items(): print("当前测试的项目为 :", name)res = OrderedDict()res['test_examples'] = []for n in cols_name:res[n] = []df = pd.DataFrame(res)excel_name = name + ".xlsx"df.to_excel(excel_name, index=False)for query in data:print("当前测试语句为 :", query)origin = pd.read_excel(excel_name)with alive_bar(len(vus)) as bar:temp_dict = {}temp_dict['test_examples'] = queryfor vu in vus:keyRps = vu + '-rps/s'keyTime = vu + '-avg/ms'MyVar='MyVar=' + query#通过Popen执行k6脚本,并且捕获它的标准输出process = subprocess.Popen(['k6', 'run', '--quiet', 'script.js', '--env', MyVar, '--vus', vu, '--duration', args.duration_time], stdout=subprocess.PIPE, stderr=subprocess.PIPE)result = process.stdout.read()temp = result.split()temp_dict[keyTime] = temp[0].decode();temp_dict[keyRps] = temp[1].decode();print("并发:", vu, temp[0].decode(), temp[1].decode())bar()#将脚本输出写到excelsave_data = origin.append(temp_dict, ignore_index=True)save_data.to_excel(excel_name, index=False)

执行此Python脚本,可以得到类似以下输出:

1、k6官网文档链接:https://k6.io/docs/

2、k6安装链接:https://k6.io/docs/get-started/installation/

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

这篇关于基于k6和python进行自动化性能测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/517492

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑