基于k6和python进行自动化性能测试

2023-12-20 21:04

本文主要是介绍基于k6和python进行自动化性能测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

import http from 'k6/http';
import { sleep } from 'k6';
export default function () {http.get('https://test-api.com');sleep(1);
}

当我们开发完成一个应用程序时,往往需要对其进行性能测试,以帮助我们更好的优化程序以及发现程序中的一些bug。在性能测试中,达到相应的性能指标对于一个软件来说十分重要,在本文中,将介绍一种现代化性能测试工具k6。

k6是一个开源工具,基于JavaScript可以编写k6的测试脚本,测试Web应用程序以及API的性能,支持HTTP等多种协议,可以很好地模拟各种高负载场景,充分验证程序稳定性和性能。k6支持Linux、MacOS等多个平台,通过k6官网根据提示即可在各个平台快速安装k6,终端输入k6 version出现如下显示说明安装成功。

以下是一个简单的k6测试脚本,通过k6的HTTP API模拟Get请求,并且休眠一秒钟:K

import http from 'k6/http';
import { sleep } from 'k6';
export default function () {http.get('https://test-api.com');sleep(1);
}

通过执行下面这行代码,运行脚本,即可对服务完成测试。

k6 run test-script.js

k6提供了丰富的功能,以下是k6常用的一些API,具体可以参考官网文档介绍:

- http.get(url, [options]):发送GET请求。
- http.post(url, body, [options]):发送POST请求。
- check(res, checks):检查响应是否符合预期。
- group(name, func):将一组请求分组并统计性能指标。
- sleep(duration):休眠指定的时间。

k6的测试结果包括以下一些指标,可以根据这些指标,更好的优化程序。

- VUs:虚拟用户的数量。
- Iterations:迭代次数。
- RPS:每秒钟的请求数。
- Duration:测试持续时间。
- Data Sent/Received:发送和接收的数据量。
- Checks:检查的数量。
- Status codes:响应状态码的数量。
- Errors:错误的数量。
- Latency distribution:延迟分布。

通过Python和k6你可以更加高效的完成符合自己要求的自动化测试,Python可以提供非常多的工具库,用来收集处理k6返回的结果。 我们可以编写以下k6测试脚本,并且通过Python去执行它,相关注释我已经标注出来,在handleSummary函数中,我们可以通过metrics来获取各种测试信息,具体如代码所示,可以参考官网关于metrics的介绍,同时自定义环境变量的使用也十分方便,可以参考代码中的使用方式。

import http from 'k6/http';
import { check, sleep} from 'k6';
import {Rate} from 'k6/metrics';
export default function() {#post请求所需要的body体let requestBody = {"xxx":["xxxxx"],"xxxx": __ENV.MyVar # MyVar为自定义的环境变量,可以通过__ENV调用,在执行脚本时可直接通过MyVar=xxx传值};#urlconst url = 'http://example.com';const payload = JSON.stringify(requestBody);const params = {headers: {'Content-Type': 'application/json',},timeout: '100s' #每个请求的超时时间};let res = http.post(url, payload, params);#检测结果是否是200OKcheck(res, { 'status is 200': (r) => r.status === 200 });
}
export function handleSummary(data) {#通过data.metrics中的字段可以获取你想要的一些信息,例如每个请求的持续时间和吞吐量const time = `${data.metrics.http_req_duration.values.avg.toFixed(3)}`;const rps = `${data.metrics.http_reqs.values.rate.toFixed(3)}`;const res = `${time} ${rps}`; console.log(res); # 利用console.log可以将内容打印到控制台return {stdout : res}; #输出到标准输出
}

如下是一个Python代码示例,相关代码已经注释,通过Python中的subprocess模块执行k6脚本,并且捕获k6脚本的输出,通过pandas库进行整理输出到excel中。还可以通过argparse库解析命令行参数传入k6脚本中,更加灵活,高效。

# -*- coding: utf-8 -*-
import subprocess
from alive_progress import alive_bar # 非常丰富的进度条工具库
from tqdm import tqdm # 进度条工具库
import pandas as pd # 可以用来处理文本excel,csv等
from collections import OrderedDict
import argparse # 用来解析命令行参数 
import time
print('测试时间 : ', time.strftime('%b %d %Y %H:%M:%S', time.gmtime(time.time())))
print("************开始测试啦! 祈祷不出错!**************")
# 需要测试的测试语句集合
test_examples = ["aaaaaaa","bbbbbbb","ccccccc"
]
dataMap = {'test': test_examples}
parser = argparse.ArgumentParser()
parser.add_argument("-d", default="60s", help="duration time", dest="duration_time") #解析命令行参数,控制测试时间
args = parser.parse_args()
print("每条语句测试时间 : ", args.duration_time)
vus = ['10', '20', '30', '40'] # 并发数集合 ,分别测试并发数为10,20,30,40的场景
cols_name = ['1-avg/ms', '1-rps/s', '10-avg/ms', '10-rps/s','20-avg/ms', '20-rps/s','50-avg/ms', '50-rps/s'] # excel的列名
# 循环测试,可以将多个需要测试的语句集合放入到dataMap中
for (name, data) in dataMap.items(): print("当前测试的项目为 :", name)res = OrderedDict()res['test_examples'] = []for n in cols_name:res[n] = []df = pd.DataFrame(res)excel_name = name + ".xlsx"df.to_excel(excel_name, index=False)for query in data:print("当前测试语句为 :", query)origin = pd.read_excel(excel_name)with alive_bar(len(vus)) as bar:temp_dict = {}temp_dict['test_examples'] = queryfor vu in vus:keyRps = vu + '-rps/s'keyTime = vu + '-avg/ms'MyVar='MyVar=' + query#通过Popen执行k6脚本,并且捕获它的标准输出process = subprocess.Popen(['k6', 'run', '--quiet', 'script.js', '--env', MyVar, '--vus', vu, '--duration', args.duration_time], stdout=subprocess.PIPE, stderr=subprocess.PIPE)result = process.stdout.read()temp = result.split()temp_dict[keyTime] = temp[0].decode();temp_dict[keyRps] = temp[1].decode();print("并发:", vu, temp[0].decode(), temp[1].decode())bar()#将脚本输出写到excelsave_data = origin.append(temp_dict, ignore_index=True)save_data.to_excel(excel_name, index=False)

执行此Python脚本,可以得到类似以下输出:

1、k6官网文档链接:https://k6.io/docs/

2、k6安装链接:https://k6.io/docs/get-started/installation/

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

这篇关于基于k6和python进行自动化性能测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/517492

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四