《十堂课学习 Flink》第五章:Table API 以及 Flink SQL 入门

2023-12-20 10:30

本文主要是介绍《十堂课学习 Flink》第五章:Table API 以及 Flink SQL 入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四章中介绍了 DataStream API 以及 DataSet API 的入门案例,本章开始介绍 Table API 以及基于此的高层应用 Flink SQL 的基础。

5.1 Flink Table & SQL 基础知识

Flink 提供了两个关系API——Table API 和 SQL——用于统一的流和批处理。Table API 是一种针对Java、Scala和Python的语言集成查询API,它允许以非常直观的方式组合来自关系运算符(如选择、筛选和联接)的查询。Flink的SQL支持基于Apache Calcite,后者实现了SQL标准。无论输入是连续的(流式)还是有界的(批处理),在任一接口中指定的查询都具有相同的语义并指定相同的结果。

Table API和SQL接口与彼此以及Flink的DataStream API无缝集成。您可以轻松地在所有API和基于它们构建的库之间切换。

SQL是数据分析中使用最广泛的语言。Flink的Table API和SQL使用户能够用更少的时间和精力定义高效的流分析应用程序。此外,Flink Table API和SQL得到了有效的优化,它集成了大量的查询优化和优化的运算符实现。但并非所有优化都是默认启用的,因此对于某些工作负载,可以通过启用某些选项来提高性能。

5.2 DataStream / DataSet API & Table API & SQL 之间的关系

如下图所示,现在从下往上我们逐层介绍。
在这里插入图片描述

  • 最低级别的抽象只是提供有状态和及时的流处理。它通过Process Function嵌入到DataStream API中。它允许用户自由处理来自一个或多个流的事件,并提供一致的容错状态。此外,用户可以注册事件时间和处理时间回调,使程序能够实现复杂的计算。
  • 在实践中,许多应用程序不需要上面描述的低级抽象,而是可以根据核心API进行编程:DataStream API(有界/无界流)。这些流畅的API为数据处理提供了通用的构建块,如各种形式的用户指定的转换、联接、聚合、窗口、状态等。在这些API中处理的数据类型在各自的编程语言中表示为类。
    低级别的Process Function与DataStream API集成在一起,从而可以按需使用低级别的抽象。数据集API在有界数据集上提供了额外的基元,如循环/迭代。
  • Table API是一个以表为中心的声明性DSL,表可以是动态变化的表(当表示流时)。Table API遵循(扩展的)关系模型:表附加了一个模式(类似于关系数据库中的表),API提供了类似的操作,如选择、项目、联接、分组传递、聚合等。Table API程序以声明的方式定义了应该执行的逻辑操作,而不是确切地指定操作代码的外观。虽然Table API可以通过各种类型的用户定义函数进行扩展,但它的表达能力不如Core API,使用起来更简洁(编写的代码更少)。此外,Table API 程序还通过一个优化器,该优化器在执行之前应用优化规则。
    可以在表和数据流/数据集之间无缝转换,允许程序将表API与数据流和数据集API混合。
  • Flink提供的最高级别抽象是SQL。这种抽象在语义和表达上都类似于Table API,但将程序表示为SQL查询表达式。SQL抽象与Table API密切交互,SQL查询可以在Table API中定义的表上执行。

5.3 Flink Table API 添加依赖

在前面的例子中,我们已经添加了 flink-clients 核心依赖,现在使用Table API 时,需要额外添加两个依赖,如下所示:

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_${scala.binary.version}</artifactId><version>${flink.version}</version>
</dependency>
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_${scala.binary.version}</artifactId><version>${flink.version}</version>
</dependency>

其中,${flink.version} 为 1.14.6 ,而 {scala.binary.version} 为 2.11。

5.4 Flink Table API / SQL 第一个例子 StreamSQLExample

这个例子大概可以理解为:总共两个订单,每个订单里包含三条记录,总共六条记录。形成一张表,然后根据订单中 product 字段进行 UNION 操作,并把最终结果打印。

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;import java.util.Arrays;/*** 摘录自 flink 1.14.6 源码例子* @author Smileyan*/
public class StreamSQLExample {public static void main(String[] args) throws Exception {// set up the Java DataStream APIfinal StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// set up the Java Table APIfinal StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);final DataStream<Order> orderA =env.fromCollection(Arrays.asList(new Order(1L, "beer", 3),new Order(1L, "diaper", 4),new Order(3L, "rubber", 2)));final DataStream<Order> orderB =env.fromCollection(Arrays.asList(new Order(2L, "pen", 3),new Order(2L, "rubber", 3),new Order(4L, "beer", 1)));// convert the first DataStream to a Table object// it will be used "inline" and is not registered in a catalogfinal Table tableA = tableEnv.fromDataStream(orderA);// convert the second DataStream and register it as a view// it will be accessible under a nametableEnv.createTemporaryView("TableB", orderB);// union the two tablesfinal Table result =tableEnv.sqlQuery("SELECT * FROM "+ tableA+ " WHERE amount > 2 UNION ALL "+ "SELECT * FROM TableB WHERE amount < 2");// convert the Table back to an insert-only DataStream of type `Order`tableEnv.toDataStream(result, Order.class).print();// after the table program is converted to a DataStream program,// we must use `env.execute()` to submit the jobenv.execute();}// *************************************************************************//     USER DATA TYPES// *************************************************************************/** Simple POJO. */public static class Order {public Long user;public String product;public int amount;// for POJO detection in DataStream APIpublic Order() {}// for structured type detection in Table APIpublic Order(Long user, String product, int amount) {this.user = user;this.product = product;this.amount = amount;}@Overridepublic String toString() {return "Order{"+ "user="+ user+ ", product='"+ product+ '\''+ ", amount="+ amount+ '}';}}
}

在这里插入图片描述

5.5 Flink Table API / SQL 第二个例子 WordCountSQLExample

这个例子更加简单,因为连 union 的操作都已经省去了,直接从一个表中进行SELECT。

import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;/**** @author Smileyan*/
public class WordCountSQLExample {public static void main(String[] args) {// set up the Table APIfinal EnvironmentSettings settings = EnvironmentSettings.newInstance().inBatchMode().build();final TableEnvironment tableEnv = TableEnvironment.create(settings);// execute a Flink SQL job and print the result locallytableEnv.executeSql(// define the aggregation"SELECT word, SUM(frequency) AS `count`\n"// read from an artificial fixed-size table with rows and columns+ "FROM (\n"+ "  VALUES ('Hello', 1), ('Ciao', 1), ('Hello', 2)\n"+ ")\n"// name the table and its columns+ "AS WordTable(word, frequency)\n"// group for aggregation+ "GROUP BY word").print();}
}

在这里插入图片描述

5.6 参考资料

https://github.com/apache/flink/tree/release-1.14.6
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/overview/

5.7 总结

第四章介绍了DataStream API和DataSet API的入门案例,而第五章则开始介绍了Table API以及基于其上的高层应用Flink SQL的基础知识。

在5.1中,阐述了Flink提供的两个关系API——Table API和SQL,用于统一流和批处理。无论是处理连续的流数据还是有界的批处理数据,在这两个接口中指定的查询具有相同的语义和结果。Table API和SQL接口与DataStream API无缝集成,用户可以轻松在它们之间切换。

5.2详细描述了DataStream、DataSet、Table API以及SQL之间的关系。从最低级别的抽象开始,介绍了DataStream API的Process Function,然后是DataStream API和DataSet API的一般构建块,最后到以表为中心的声明性DSL——Table API。最高级别的抽象是SQL,与Table API密切交互,允许通过SQL查询表达式执行操作。

在5.3中,介绍了Flink Table API的添加依赖,以及相应的Maven配置。

最后,在5.4和5.5中给出了两个Flink Table API / SQL的例子。StreamSQLExample展示了使用Table API和SQL进行流处理的例子,而WordCountSQLExample则展示了一个简单的批处理Flink SQL作业。

总体而言,本章深入介绍了Flink的Table API和SQL,以及它们与DataStream和DataSet API的关系,为使用Flink进行流和批处理提供了全面的基础知识。

Smileyan
2023.12.18 23:14

这篇关于《十堂课学习 Flink》第五章:Table API 以及 Flink SQL 入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515694

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

MySQL 多表连接操作方法(INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN)

《MySQL多表连接操作方法(INNERJOIN、LEFTJOIN、RIGHTJOIN、FULLOUTERJOIN)》多表连接是一种将两个或多个表中的数据组合在一起的SQL操作,通过连接,... 目录一、 什么是多表连接?二、 mysql 支持的连接类型三、 多表连接的语法四、实战示例 数据准备五、连接的性

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.