管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜D

2023-12-20 06:36

本文主要是介绍管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜D,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先看目录,除了2018年比较怪,其他最多2个D(数学只有两个弟弟,一个大弟,一个小弟)

文章目录

    • 2023
      • 真题(2023-16)-D
    • 2022
      • 真题(2022-21)-D-分析选项⇒是否等价⇒是,选D
    • 2021
      • 真题(2021-21)-D-特值体系法;
      • 真题(2021-25)-D-要素列表法plus-要素间的比;一般而言,完成拼图要确定几个要素与就需要条件匹配几个关系;若只要求几个要素之间的比,则需要的关系个数减1;-D-数列-等差数列和等比数列
    • 2020
      • 真题(2020-21)-D-分析选项⇒是否等价⇒是,选D
    • 2019
      • 真题(2019-17)-D
      • 真题(2019-20)-D
    • 2018
      • 真题(2018-18)-D-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
      • 真题(2018-19)-D
      • 真题(2018-20)-D-分析选项⇒是否等价⇒是,选D
      • 真题(2018-23)-D
      • 真题(2018-25)-D-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
    • 2017
      • 真题(2017-16)-D-分析选项⇒是否等价⇒是,选D
    • 2016
      • 真题(2016-25)-D-要素列表法plus-特殊套路-一次与二次-大前提有等式+一次条件 vs 二次条件 ⟹ 选D;
    • 2015
      • 真题(2015-16)-D
      • 真题(2015-23)-D
    • 2014
    • 2013
      • 真题(2013-20)-D-翻译“≥≤”:题干或选项可以翻译为“≥”或“≤”,选D。得:题干“达到0.999”翻译为“≥0.999”,选D。(谁能想到呢。_。)
      • 真题(2013-25)-D;-容易误判选A,因为选范围小的,也容易误判选C,因为一个等号+一个不等号!!!!!!

2023

真题(2023-16)-D

-数据分析-排列组合-组合-C运算
在这里插入图片描述

在这里插入图片描述

2022

真题(2022-21)-D-分析选项⇒是否等价⇒是,选D

-数列-等比数列-等比中项;勾股定理
21.某直角三角形的三边长 𝑎 , 𝑏 , 𝑐 成等比数列,则能确定公比的值
(1)𝑎 是直角边长
(2)𝑐 是斜边长
在这里插入图片描述

2021

真题(2021-21)-D-特值体系法;

D-几何-解析几何-位置-线圆位置-相离-也还是转为圆心点到直线的距离公式
21.设x ,y为实数,则能确定 x ≤ y x≤y xy
(1) x 2 ≤ y − 1 x^2≤y-1 x2y1
(2) x 2 + ( y − 2 ) 2 ≤ 2 x^2+(y-2)^2≤2 x2+(y2)22
在这里插入图片描述

在这里插入图片描述

真题(2021-25)-D-要素列表法plus-要素间的比;一般而言,完成拼图要确定几个要素与就需要条件匹配几个关系;若只要求几个要素之间的比,则需要的关系个数减1;-D-数列-等差数列和等比数列

25.给定两个直角三角形,则这两个直角三角形相似。
(1)每个直角三角形边长成等比数列。
(2)每个直角三角形边长成等差数列。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2020

真题(2020-21)-D-分析选项⇒是否等价⇒是,选D

-几何-立方几何
21、在长方体中,能确定长方体的体对角线长度。
(1)已知长方体一个顶点的三个面的面积。
(2)已知长方体一个顶点的三个面的面对角线的长度。
在这里插入图片描述
在这里插入图片描述

2019

真题(2019-17)-D

-数据分析-概率已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率
17、有甲乙两袋奖券,获奖率分别为 p 和q ,某人从两袋中各随机抽取 1 张奖券,则此人获奖的概率不小于 3 2 \frac{3}{2} 23
(1) 已经 p + q = 1 p + q = 1 p+q=1
(2) 已知 p q = 1 4 pq=\frac{1}{4} pq=41
在这里插入图片描述
在这里插入图片描述

真题(2019-20)-D

-代数-方程-整数不定方程
20、关于 x 的方程 x 2 + a x + b = 1 x^2+ax+b=1 x2+ax+b=1有实根

(1) a + b = 0 a +b =0 a+b=0
(2) a − b = 0 a −b =0 ab=0
在这里插入图片描述
在这里插入图片描述

2018

真题(2018-18)-D-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;

-D-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
18.设 m , n m,n m,n是正整数,则能确定 m + n m+n m+n的值。
(1) 1 m + 3 n = 1 {1\over{m}}+{3\over{n}}=1 m1+n3=1
(2) 1 m + 2 n = 1 {1\over{m}}+{2\over{n}}=1 m1+n2=1
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-19)-D

-代数-不等式-均值不等式
19.甲、乙、丙 3 人年收入成等比数列,则能确定乙的年收入最大值。
(1)已知甲丙两人年收入之和。
(2)已知甲丙两人年收入之积。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

真题(2018-20)-D-分析选项⇒是否等价⇒是,选D

-几何-平面几何-长方形
20.如图所示,在矩形ABCD中AE=FC,则三角形AED与四边形 BCFE能拼成一个直角三角形。
(1)EB=2FC
(2)ED=EF
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-23)-D

-应用题-增长率
23.如果甲公司年终奖总额增加 25%,乙公司年终奖总额减少 10%,两者相等,则能确定两公司的员工人数之比。
(1)甲公司的人均年终奖与乙公司相同。
(2)两公司的员工数之比与两公司年终奖总额之比相等。
D。本题考查比例问题。设甲公司的年终奖总额为a,乙公司的年终奖总额为b,则有a(1+25%)=b(1-10%),简化得两公司年终奖总额之比a/b=18/25,结合条件(1),可得两公司员工人数之比与奖金总额之比相等,故(1)充分,条件(2)显然充分。
秒杀:等价条件题,选项(1)是(2)充分必要条件,都选D。∵(2)甲员工/乙员工=甲年终/乙年终,得:甲年终/甲员工=乙年终/乙员工,得:甲人均年终奖=乙人均年终奖。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

真题(2018-25)-D-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-函数-复合函数
25.设函数 f ( x ) = x 2 + a x f(x)=x^2+ax f(x)=x2+ax ,则 f (x) 最小值与 f ( f ( x ) ) f(f(x)) f(f(x))的最小值相等。
(1) a ≥ 2 a ≥ 2 a2
(2) a ≤ 0 a ≤ 0 a0
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2017

真题(2017-16)-D-分析选项⇒是否等价⇒是,选D

-应用题-工程
16.某人需要处理若干份文件,第一个小时处理了全部文件的 15,第二个小时处理了剩余文件的 14,则此人需要处理的文件共 25 份。
(1)前两小时处理了 10 份文件
(2)第二小时处理了 5 份文件
在这里插入图片描述在这里插入图片描述

2016

真题(2016-25)-D-要素列表法plus-特殊套路-一次与二次-大前提有等式+一次条件 vs 二次条件 ⟹ 选D;

-D-代数-方程-一元二次方程-根的分布
25.已知 f ( x ) = x 2 + a x + b f(x)=x^2+ax+b f(x)=x2+ax+b,则 0 ≤ f ( 1 ) ≤ 1 0≤f(1)≤1 0f(1)1
(1) f ( x ) f(x) f(x) 在区间[ 0,1 ]中有两个零点。
(2) f ( x ) f(x) f(x) 在区间[ 1,2 ]中有两个零点。
在这里插入图片描述

在这里插入图片描述

2015

真题(2015-16)-D

-几何-解析几何-直线与圆的位置关系
16.圆盘 x 2 + y 2 ≤ 2 ( x + y ) x^2+y^2≤2(x+y) x2+y22(x+y)被直线 L 分成面积相等的两部分。
(1) L: x + y = 2 x + y = 2 x+y=2
(2) L: 2 x − y = 1 2x-y= 1 2xy=1
在这里插入图片描述
在这里插入图片描述

真题(2015-23)-D

-数列-等差数列-前n项和的最值
23.已知数列{ a n a_n an}是公差大于零的等差数列,{ S n S_n Sn}是{ a n a_n an}的前n 项和。则 S n ≥ S 10 , n = 1 , 2 , . . . S_n≥S_{10},n=1,2,... SnS10n=1,2,...
(1) a 10 = 0 a_{10}=0 a10=0
(2) a 11 a 10 < 0 a_{11}a_{10}<0 a11a100
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2014

2013

真题(2013-20)-D-翻译“≥≤”:题干或选项可以翻译为“≥”或“≤”,选D。得:题干“达到0.999”翻译为“≥0.999”,选D。(谁能想到呢。_。)

-数据分析-概率-已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率-独立事件-若干独立事件同时发生的概率,等于这些事件单独发生的概率的乘积=分步乘-
20.档案馆在一个库房安装了n个烟火感应报警器,每个报警器遇到烟火成功报警的概率为 p p p。该库房遇烟火发出报警的概率达到 0.999 0.999 0.999
(1) n = 3 , p = 0.9 n = 3,p = 0.9 n=3p=0.9
(2) n = 2 , p = 0.97 n = 2,p = 0.97 n=2p=0.97
在这里插入图片描述

真题(2013-25)-D;-容易误判选A,因为选范围小的,也容易误判选C,因为一个等号+一个不等号!!!!!!

-数列-递推公式-难度升级-中间段才出现周期
25.设 a 1 = 1 , a 2 = k , . . . , a n + 1 = ∣ a n − a n − 1 ∣ , ( n ≥ 2 ) a_1=1,a_2=k,...,a_{n+1}=|a_n-a_{n-1}|,(n≥2) a1=1,a2=k,...,an+1=anan1,(n2) ,则 a 100 + a 101 + a 102 = 2 a_{100}+a_{101}+a_{102}=2 a100+a101+a102=2
(1) k = 2 k = 2 k=2
(2)k 是小于 20 的正整数

在这里插入图片描述
在这里插入图片描述

这篇关于管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜D的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515054

相关文章

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

在Node.js中使用.env文件管理环境变量的全过程

《在Node.js中使用.env文件管理环境变量的全过程》Node.js应用程序通常依赖于环境变量来管理敏感信息或配置设置,.env文件已经成为一种流行的本地管理这些变量的方法,本文将探讨.env文件... 目录引言为什么使php用 .env 文件 ?如何在 Node.js 中使用 .env 文件最佳实践引

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

Linux之UDP和TCP报头管理方式

《Linux之UDP和TCP报头管理方式》文章系统讲解了传输层协议UDP与TCP的核心区别:UDP无连接、不可靠,适合实时传输(如视频),通过端口号标识应用;TCP有连接、可靠,通过确认应答、序号、窗... 目录一、关于端口号1.1 端口号的理解1.2 端口号范围的划分1.3 认识知名端口号1.4 一个进程