管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜D

2023-12-20 06:36

本文主要是介绍管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜D,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先看目录,除了2018年比较怪,其他最多2个D(数学只有两个弟弟,一个大弟,一个小弟)

文章目录

    • 2023
      • 真题(2023-16)-D
    • 2022
      • 真题(2022-21)-D-分析选项⇒是否等价⇒是,选D
    • 2021
      • 真题(2021-21)-D-特值体系法;
      • 真题(2021-25)-D-要素列表法plus-要素间的比;一般而言,完成拼图要确定几个要素与就需要条件匹配几个关系;若只要求几个要素之间的比,则需要的关系个数减1;-D-数列-等差数列和等比数列
    • 2020
      • 真题(2020-21)-D-分析选项⇒是否等价⇒是,选D
    • 2019
      • 真题(2019-17)-D
      • 真题(2019-20)-D
    • 2018
      • 真题(2018-18)-D-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
      • 真题(2018-19)-D
      • 真题(2018-20)-D-分析选项⇒是否等价⇒是,选D
      • 真题(2018-23)-D
      • 真题(2018-25)-D-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
    • 2017
      • 真题(2017-16)-D-分析选项⇒是否等价⇒是,选D
    • 2016
      • 真题(2016-25)-D-要素列表法plus-特殊套路-一次与二次-大前提有等式+一次条件 vs 二次条件 ⟹ 选D;
    • 2015
      • 真题(2015-16)-D
      • 真题(2015-23)-D
    • 2014
    • 2013
      • 真题(2013-20)-D-翻译“≥≤”:题干或选项可以翻译为“≥”或“≤”,选D。得:题干“达到0.999”翻译为“≥0.999”,选D。(谁能想到呢。_。)
      • 真题(2013-25)-D;-容易误判选A,因为选范围小的,也容易误判选C,因为一个等号+一个不等号!!!!!!

2023

真题(2023-16)-D

-数据分析-排列组合-组合-C运算
在这里插入图片描述

在这里插入图片描述

2022

真题(2022-21)-D-分析选项⇒是否等价⇒是,选D

-数列-等比数列-等比中项;勾股定理
21.某直角三角形的三边长 𝑎 , 𝑏 , 𝑐 成等比数列,则能确定公比的值
(1)𝑎 是直角边长
(2)𝑐 是斜边长
在这里插入图片描述

2021

真题(2021-21)-D-特值体系法;

D-几何-解析几何-位置-线圆位置-相离-也还是转为圆心点到直线的距离公式
21.设x ,y为实数,则能确定 x ≤ y x≤y xy
(1) x 2 ≤ y − 1 x^2≤y-1 x2y1
(2) x 2 + ( y − 2 ) 2 ≤ 2 x^2+(y-2)^2≤2 x2+(y2)22
在这里插入图片描述

在这里插入图片描述

真题(2021-25)-D-要素列表法plus-要素间的比;一般而言,完成拼图要确定几个要素与就需要条件匹配几个关系;若只要求几个要素之间的比,则需要的关系个数减1;-D-数列-等差数列和等比数列

25.给定两个直角三角形,则这两个直角三角形相似。
(1)每个直角三角形边长成等比数列。
(2)每个直角三角形边长成等差数列。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2020

真题(2020-21)-D-分析选项⇒是否等价⇒是,选D

-几何-立方几何
21、在长方体中,能确定长方体的体对角线长度。
(1)已知长方体一个顶点的三个面的面积。
(2)已知长方体一个顶点的三个面的面对角线的长度。
在这里插入图片描述
在这里插入图片描述

2019

真题(2019-17)-D

-数据分析-概率已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率
17、有甲乙两袋奖券,获奖率分别为 p 和q ,某人从两袋中各随机抽取 1 张奖券,则此人获奖的概率不小于 3 2 \frac{3}{2} 23
(1) 已经 p + q = 1 p + q = 1 p+q=1
(2) 已知 p q = 1 4 pq=\frac{1}{4} pq=41
在这里插入图片描述
在这里插入图片描述

真题(2019-20)-D

-代数-方程-整数不定方程
20、关于 x 的方程 x 2 + a x + b = 1 x^2+ax+b=1 x2+ax+b=1有实根

(1) a + b = 0 a +b =0 a+b=0
(2) a − b = 0 a −b =0 ab=0
在这里插入图片描述
在这里插入图片描述

2018

真题(2018-18)-D-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;

-D-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
18.设 m , n m,n m,n是正整数,则能确定 m + n m+n m+n的值。
(1) 1 m + 3 n = 1 {1\over{m}}+{3\over{n}}=1 m1+n3=1
(2) 1 m + 2 n = 1 {1\over{m}}+{2\over{n}}=1 m1+n2=1
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-19)-D

-代数-不等式-均值不等式
19.甲、乙、丙 3 人年收入成等比数列,则能确定乙的年收入最大值。
(1)已知甲丙两人年收入之和。
(2)已知甲丙两人年收入之积。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

真题(2018-20)-D-分析选项⇒是否等价⇒是,选D

-几何-平面几何-长方形
20.如图所示,在矩形ABCD中AE=FC,则三角形AED与四边形 BCFE能拼成一个直角三角形。
(1)EB=2FC
(2)ED=EF
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-23)-D

-应用题-增长率
23.如果甲公司年终奖总额增加 25%,乙公司年终奖总额减少 10%,两者相等,则能确定两公司的员工人数之比。
(1)甲公司的人均年终奖与乙公司相同。
(2)两公司的员工数之比与两公司年终奖总额之比相等。
D。本题考查比例问题。设甲公司的年终奖总额为a,乙公司的年终奖总额为b,则有a(1+25%)=b(1-10%),简化得两公司年终奖总额之比a/b=18/25,结合条件(1),可得两公司员工人数之比与奖金总额之比相等,故(1)充分,条件(2)显然充分。
秒杀:等价条件题,选项(1)是(2)充分必要条件,都选D。∵(2)甲员工/乙员工=甲年终/乙年终,得:甲年终/甲员工=乙年终/乙员工,得:甲人均年终奖=乙人均年终奖。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

真题(2018-25)-D-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-函数-复合函数
25.设函数 f ( x ) = x 2 + a x f(x)=x^2+ax f(x)=x2+ax ,则 f (x) 最小值与 f ( f ( x ) ) f(f(x)) f(f(x))的最小值相等。
(1) a ≥ 2 a ≥ 2 a2
(2) a ≤ 0 a ≤ 0 a0
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2017

真题(2017-16)-D-分析选项⇒是否等价⇒是,选D

-应用题-工程
16.某人需要处理若干份文件,第一个小时处理了全部文件的 15,第二个小时处理了剩余文件的 14,则此人需要处理的文件共 25 份。
(1)前两小时处理了 10 份文件
(2)第二小时处理了 5 份文件
在这里插入图片描述在这里插入图片描述

2016

真题(2016-25)-D-要素列表法plus-特殊套路-一次与二次-大前提有等式+一次条件 vs 二次条件 ⟹ 选D;

-D-代数-方程-一元二次方程-根的分布
25.已知 f ( x ) = x 2 + a x + b f(x)=x^2+ax+b f(x)=x2+ax+b,则 0 ≤ f ( 1 ) ≤ 1 0≤f(1)≤1 0f(1)1
(1) f ( x ) f(x) f(x) 在区间[ 0,1 ]中有两个零点。
(2) f ( x ) f(x) f(x) 在区间[ 1,2 ]中有两个零点。
在这里插入图片描述

在这里插入图片描述

2015

真题(2015-16)-D

-几何-解析几何-直线与圆的位置关系
16.圆盘 x 2 + y 2 ≤ 2 ( x + y ) x^2+y^2≤2(x+y) x2+y22(x+y)被直线 L 分成面积相等的两部分。
(1) L: x + y = 2 x + y = 2 x+y=2
(2) L: 2 x − y = 1 2x-y= 1 2xy=1
在这里插入图片描述
在这里插入图片描述

真题(2015-23)-D

-数列-等差数列-前n项和的最值
23.已知数列{ a n a_n an}是公差大于零的等差数列,{ S n S_n Sn}是{ a n a_n an}的前n 项和。则 S n ≥ S 10 , n = 1 , 2 , . . . S_n≥S_{10},n=1,2,... SnS10n=1,2,...
(1) a 10 = 0 a_{10}=0 a10=0
(2) a 11 a 10 < 0 a_{11}a_{10}<0 a11a100
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2014

2013

真题(2013-20)-D-翻译“≥≤”:题干或选项可以翻译为“≥”或“≤”,选D。得:题干“达到0.999”翻译为“≥0.999”,选D。(谁能想到呢。_。)

-数据分析-概率-已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率-独立事件-若干独立事件同时发生的概率,等于这些事件单独发生的概率的乘积=分步乘-
20.档案馆在一个库房安装了n个烟火感应报警器,每个报警器遇到烟火成功报警的概率为 p p p。该库房遇烟火发出报警的概率达到 0.999 0.999 0.999
(1) n = 3 , p = 0.9 n = 3,p = 0.9 n=3p=0.9
(2) n = 2 , p = 0.97 n = 2,p = 0.97 n=2p=0.97
在这里插入图片描述

真题(2013-25)-D;-容易误判选A,因为选范围小的,也容易误判选C,因为一个等号+一个不等号!!!!!!

-数列-递推公式-难度升级-中间段才出现周期
25.设 a 1 = 1 , a 2 = k , . . . , a n + 1 = ∣ a n − a n − 1 ∣ , ( n ≥ 2 ) a_1=1,a_2=k,...,a_{n+1}=|a_n-a_{n-1}|,(n≥2) a1=1,a2=k,...,an+1=anan1,(n2) ,则 a 100 + a 101 + a 102 = 2 a_{100}+a_{101}+a_{102}=2 a100+a101+a102=2
(1) k = 2 k = 2 k=2
(2)k 是小于 20 的正整数

在这里插入图片描述
在这里插入图片描述

这篇关于管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜D的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/515054

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Spring中管理bean对象的方式(专业级说明)

《Spring中管理bean对象的方式(专业级说明)》在Spring框架中,Bean的管理是核心功能,主要通过IoC(控制反转)容器实现,下面给大家介绍Spring中管理bean对象的方式,感兴趣的朋... 目录1.Bean的声明与注册1.1 基于XML配置1.2 基于注解(主流方式)1.3 基于Java

基于Python+PyQt5打造一个跨平台Emoji表情管理神器

《基于Python+PyQt5打造一个跨平台Emoji表情管理神器》在当今数字化社交时代,Emoji已成为全球通用的视觉语言,本文主要为大家详细介绍了如何使用Python和PyQt5开发一个功能全面的... 目录概述功能特性1. 全量Emoji集合2. 智能搜索系统3. 高效交互设计4. 现代化UI展示效果

Mysql中的用户管理实践

《Mysql中的用户管理实践》:本文主要介绍Mysql中的用户管理实践,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录13. 用户管理13.1 用户 13.1.1 用户信息 13.1.2 创建用户 13.1.3 删除用户 13.1.4 修改用户

linux服务之NIS账户管理服务方式

《linux服务之NIS账户管理服务方式》:本文主要介绍linux服务之NIS账户管理服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、所需要的软件二、服务器配置1、安装 NIS 服务2、设定 NIS 的域名 (NIS domain name)3、修改主

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件