用进化算法来优化SVM的参数C和Gamma——利用SCOOP库进行分布式加速计算

本文主要是介绍用进化算法来优化SVM的参数C和Gamma——利用SCOOP库进行分布式加速计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该案例展示了如何利用SCOOP库进行分布式加速计算Geatpy进化算法程序,
本案例和soea_demo6类似,同样是用进化算法来优化SVM的参数C和Gamma,
不同的是,本案例选用更庞大的数据集,使得每次训练SVM模型时耗时更高,从而更适合采用分布式加速计算。
该数据集存放在同目录下的Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls中,
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling。
在执行本案例前,需要确保正确安装sklearn以及SCOOP,以保证SVM和SCOOP部分的代码能够正常执行。
SCOOP安装方法:控制台执行命令pip install scoop
分布式加速计算注意事项:
1.当aimFunc()函数十分耗时,比如无法矩阵化计算、或者是计算单个个体的目标函数值就需要很长时间时,适合采用分布式计算,否则贸然采用分布式计算反而会大大降低性能。
2.分布式执行方法:python -m scoop -n 10 main.py 其中10表示把计算任务分发给10个workers。非分布式执行方法:python main.py
# -*- coding: utf-8 -*-
import numpy as np
import xlrd
import geatpy as ea
from sklearn import svm
from sklearn import preprocessing
from sklearn.model_selection import cross_val_score
from scoop import futures"""
该案例展示了如何利用SCOOP库进行分布式加速计算Geatpy进化算法程序,
本案例和soea_demo6类似,同样是用进化算法来优化SVM的参数C和Gamma,
不同的是,本案例选用更庞大的数据集,使得每次训练SVM模型时耗时更高,从而更适合采用分布式加速计算。
该数据集存放在同目录下的Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls中,
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling。
在执行本案例前,需要确保正确安装sklearn以及SCOOP,以保证SVM和SCOOP部分的代码能够正常执行。
SCOOP安装方法:控制台执行命令pip install scoop
分布式加速计算注意事项:
1.当aimFunc()函数十分耗时,比如无法矩阵化计算、或者是计算单个个体的目标函数值就需要很长时间时,适合采用分布式计算,否则贸然采用分布式计算反而会大大降低性能。
2.分布式执行方法:python -m scoop -n 10 main.py 其中10表示把计算任务分发给10个workers。非分布式执行方法:python main.py
"""class MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置)M = 1 # 初始化M(目标维数)maxormins = [-1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = 2 # 初始化Dim(决策变量维数)varTypes = [0, 0] # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [2**(-8), 2**(-8)] # 决策变量下界ub = [2**8, 1] # 决策变量上界lbin = [1] * Dim # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)ubin = [1] * Dim # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)# 目标函数计算中用到的一些数据workbook=xlrd.open_workbook("Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls") # 打开文件,获取excel文件的workbook(工作簿)对象worksheet=workbook.sheet_by_name("Training_Data") # 通过sheet名获得sheet对象self.data = np.vstack([worksheet.col_values(0)[1:],worksheet.col_values(1)[1:],worksheet.col_values(2)[1:],worksheet.col_values(3)[1:],worksheet.col_values(4)[1:]]).T # 获取特征数据self.data = preprocessing.scale(self.data) # 归一化特征数据self.dataTarget = worksheet.col_values(5)[1:] # 获取标签数据def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵args = list(zip(list(range(pop.sizes)), [Vars] * pop.sizes, [self.data] * pop.sizes, [self.dataTarget] * pop.sizes))pop.ObjV = np.array(list(futures.map(subAimFunc, args))) # 调用SCOOP的map函数进行分布式计算,并构造种群所有个体的目标函数值矩阵ObjVdef test(self, C, G): # 代入优化后的C、Gamma对测试集进行检验# 读取测试集数据workbook=xlrd.open_workbook("Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls") # 打开文件,获取excel文件的workbook(工作簿)对象worksheet=workbook.sheet_by_name("Test_Data") # 通过sheet名获得sheet对象data_test = np.vstack([worksheet.col_values(0)[1:],worksheet.col_values(1)[1:],worksheet.col_values(2)[1:],worksheet.col_values(3)[1:],worksheet.col_values(4)[1:]]).T # 获取特征数据data_test = preprocessing.scale(data_test) # 归一化特征数据dataTarget_test = worksheet.col_values(5)[1:] # 获取标签数据svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(self.data, self.dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型dataTarget_predict = svc.predict(data_test) # 采用训练好的分类器对象对测试集数据进行预测print("测试集数据分类正确率 = %s%%"%(len(np.where(dataTarget_predict == dataTarget_test)[0]) / len(dataTarget_test) * 100))def subAimFunc(args): # 单独计算单个个体的目标函数值i = args[0]Vars = args[1]data = args[2]dataTarget = args[3]C = Vars[i, 0]G = Vars[i, 1]svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(data, dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型scores = cross_val_score(svc, data, dataTarget, cv=20) # 计算交叉验证的得分ObjV_i = [scores.mean()] # 把交叉验证的平均得分作为目标函数值return ObjV_i

源代码

这篇关于用进化算法来优化SVM的参数C和Gamma——利用SCOOP库进行分布式加速计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515013

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

基于MongoDB实现文件的分布式存储

《基于MongoDB实现文件的分布式存储》分布式文件存储的方案有很多,今天分享一个基于mongodb数据库来实现文件的存储,mongodb支持分布式部署,以此来实现文件的分布式存储,需要的朋友可以参考... 目录一、引言二、GridFS 原理剖析三、Spring Boot 集成 GridFS3.1 添加依赖

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho