fisher判别分析原理及实现

2023-12-20 05:08

本文主要是介绍fisher判别分析原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:

  • 周志华老师的《机器学习》
  • http://wiki.mbalib.com/wiki/%E5%88%A4%E5%88%AB%E5%88%86%E6%9E%90

判别分析是一种经典的现行分析方法,其利用已知类别的样本建立判别模型,对未知类别的样本进行分类。在这里我们主要讨论fisher判别分析的方法。

fishter原理

费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。

公式推导

这里给出一个二维的示意图(摘自周志华老师的《机器学习》一书),在接下来的讨论中我们也将以二维的情况做分类来逐步分析原理和实现。
摘自周志华老师的机器学习
ps: 图中有一处描述似乎不是特别的准确,直线的方程应该是

0=wTx


而不是

y=wTx

ps: 因为在书关于此的其他讨论中,并未涉及任何y的概念,这里将y写入对我造成了某种误导。

对于给定的数据集,D(已经设置好分类标签),

Xi,Ui,i
分别表示给定类别

i
上,则样本中心的投影为

0=w1u1+w2u2++wnun
。(n 为样本维度,接下来的讨论中将统一设置为2),写成向量形式则为

wTu=0
如果将所有的样本都投影到直线上,则两类样本的协方差分别为

wT0wwT1w
。要想达到较好的分类效果,应该是的同类样本的投影点尽可能的接近,也就是让同类样本投影点的协方差尽可能的小。即

(wT0w+wT0w)
尽可能小。同时也应该保证不同类样本投影点尽可能的互相远离,即

∥∥wTu0wTu1∥∥
尽可能大。如果同时考虑两者的关系可以得到下面需要最大化的目标:

J=∥∥wTu0wTu1∥∥wT0w+wT0w


这里定义“类内散度矩阵”(within-class scatter matrix)

Sw=0+1=xX0(xu0)(xu0)T+xX1(xu1)(xu1)T


以及类间离散度矩阵(between-class scatter matrix)

Sb=(u0u1)(u0u1)T


J

ps:sorry 这些公式确实敲得有点累,道个歉,我直接截图了。希望不影响大家的理解。

这里写图片描述

在推导出上面的公式之后我们就可以开始写代码了。

编程实现

数据生成

这里我偷一个懒,直接用scikit-learn的接口来生成数据:

from sklearn.datasets import make_multilabel_classification
import numpy as np

x, y = make_multilabel_classification(n_samples=20, n_features=2,
n_labels=1, n_classes=1,
random_state=2) # 设置随机数种子,保证每次产生相同的数据。

# 根据类别分个类
index1 = np.array([index for (index, value) in enumerate(y) if value == 0]) # 获取类别1的indexs
index2 = np.array([index for (index, value) in enumerate(y) if value == 1]) # 获取类别2的indexs

c_1 = x[index1] # 类别1的所有数据(x1, x2) in X_1
c_2 = x[index2] # 类别2的所有数据(x1, x2) in X_2

fisher算法实现


def cal_cov_and_avg(samples):"""给定一个类别的数据,计算协方差矩阵和平均向量:param samples: :return: """u1 = np.mean(samples, axis=0)cov_m = np.zeros((samples.shape[1], samples.shape[1]))for s in samples:t = s - u1cov_m += t * t.reshape(2, 1)return cov_m, u1

def fisher(c_1, c_2):
“”"
fisher算法实现(请参考上面推导出来的公式,那个才是精华部分)
:param c_1:
:param c_2:
:return:
“”"

cov_1, u1 = cal_cov_and_avg(c_1)
cov_2, u2 = cal_cov_and_avg(c_2)
s_w = cov_1 + cov_2
u, s, v = np.linalg.svd(s_w) # 奇异值分解
s_w_inv = np.dot(np.dot(v.T, np.linalg.inv(np.diag(s))), u.T)
return np.dot(s_w_inv, u1 - u2)

判定类别

def judge(sample, w, c_1, c_2):"""true 属于1false 属于2:param sample::param w::param center_1::param center_2::return:"""u1 = np.mean(c_1, axis=0)u2 = np.mean(c_2, axis=0)center_1 = np.dot(w.T, u1)center_2 = np.dot(w.T, u2)pos = np.dot(w.T, sample)return abs(pos - center_1) < abs(pos - center_2)

w = fisher(c_1, c_2) # 调用函数,得到参数w
out = judge(c_1[1], w, c_1, c_2) # 判断所属的类别
print(out)

绘图

import matplotlib.pyplot as plt

plt.scatter(c_1[:, 0], c_1[:, 1], c=’#99CC99’)
plt.scatter(c_2[:, 0], c_2[:, 1], c=’#FFCC00’)
line_x = np.arange(min(np.min(c_1[:, 0]), np.min(c_2[:, 0])),
max(np.max(c_1[:, 0]), np.max(c_2[:, 0])),
step=1)

line_y = - (w[0] * line_x) / w[1]
plt.plot(line_x, line_y)
plt.show()

最后一步【贴图】
这里写图片描述

最后的最后,大家只要把上面所有的代码复制粘贴到一个文件夹下,在python3 环境下运行就好了。本人调试运行的环境为:

这篇关于fisher判别分析原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514848

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集