fisher判别分析原理及实现

2023-12-20 05:08

本文主要是介绍fisher判别分析原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:

  • 周志华老师的《机器学习》
  • http://wiki.mbalib.com/wiki/%E5%88%A4%E5%88%AB%E5%88%86%E6%9E%90

判别分析是一种经典的现行分析方法,其利用已知类别的样本建立判别模型,对未知类别的样本进行分类。在这里我们主要讨论fisher判别分析的方法。

fishter原理

费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。

公式推导

这里给出一个二维的示意图(摘自周志华老师的《机器学习》一书),在接下来的讨论中我们也将以二维的情况做分类来逐步分析原理和实现。
摘自周志华老师的机器学习
ps: 图中有一处描述似乎不是特别的准确,直线的方程应该是

0=wTx


而不是

y=wTx

ps: 因为在书关于此的其他讨论中,并未涉及任何y的概念,这里将y写入对我造成了某种误导。

对于给定的数据集,D(已经设置好分类标签),

Xi,Ui,i
分别表示给定类别

i
上,则样本中心的投影为

0=w1u1+w2u2++wnun
。(n 为样本维度,接下来的讨论中将统一设置为2),写成向量形式则为

wTu=0
如果将所有的样本都投影到直线上,则两类样本的协方差分别为

wT0wwT1w
。要想达到较好的分类效果,应该是的同类样本的投影点尽可能的接近,也就是让同类样本投影点的协方差尽可能的小。即

(wT0w+wT0w)
尽可能小。同时也应该保证不同类样本投影点尽可能的互相远离,即

∥∥wTu0wTu1∥∥
尽可能大。如果同时考虑两者的关系可以得到下面需要最大化的目标:

J=∥∥wTu0wTu1∥∥wT0w+wT0w


这里定义“类内散度矩阵”(within-class scatter matrix)

Sw=0+1=xX0(xu0)(xu0)T+xX1(xu1)(xu1)T


以及类间离散度矩阵(between-class scatter matrix)

Sb=(u0u1)(u0u1)T


J

ps:sorry 这些公式确实敲得有点累,道个歉,我直接截图了。希望不影响大家的理解。

这里写图片描述

在推导出上面的公式之后我们就可以开始写代码了。

编程实现

数据生成

这里我偷一个懒,直接用scikit-learn的接口来生成数据:

from sklearn.datasets import make_multilabel_classification
import numpy as np

x, y = make_multilabel_classification(n_samples=20, n_features=2,
n_labels=1, n_classes=1,
random_state=2) # 设置随机数种子,保证每次产生相同的数据。

# 根据类别分个类
index1 = np.array([index for (index, value) in enumerate(y) if value == 0]) # 获取类别1的indexs
index2 = np.array([index for (index, value) in enumerate(y) if value == 1]) # 获取类别2的indexs

c_1 = x[index1] # 类别1的所有数据(x1, x2) in X_1
c_2 = x[index2] # 类别2的所有数据(x1, x2) in X_2

fisher算法实现


def cal_cov_and_avg(samples):"""给定一个类别的数据,计算协方差矩阵和平均向量:param samples: :return: """u1 = np.mean(samples, axis=0)cov_m = np.zeros((samples.shape[1], samples.shape[1]))for s in samples:t = s - u1cov_m += t * t.reshape(2, 1)return cov_m, u1

def fisher(c_1, c_2):
“”"
fisher算法实现(请参考上面推导出来的公式,那个才是精华部分)
:param c_1:
:param c_2:
:return:
“”"

cov_1, u1 = cal_cov_and_avg(c_1)
cov_2, u2 = cal_cov_and_avg(c_2)
s_w = cov_1 + cov_2
u, s, v = np.linalg.svd(s_w) # 奇异值分解
s_w_inv = np.dot(np.dot(v.T, np.linalg.inv(np.diag(s))), u.T)
return np.dot(s_w_inv, u1 - u2)

判定类别

def judge(sample, w, c_1, c_2):"""true 属于1false 属于2:param sample::param w::param center_1::param center_2::return:"""u1 = np.mean(c_1, axis=0)u2 = np.mean(c_2, axis=0)center_1 = np.dot(w.T, u1)center_2 = np.dot(w.T, u2)pos = np.dot(w.T, sample)return abs(pos - center_1) < abs(pos - center_2)

w = fisher(c_1, c_2) # 调用函数,得到参数w
out = judge(c_1[1], w, c_1, c_2) # 判断所属的类别
print(out)

绘图

import matplotlib.pyplot as plt

plt.scatter(c_1[:, 0], c_1[:, 1], c=’#99CC99’)
plt.scatter(c_2[:, 0], c_2[:, 1], c=’#FFCC00’)
line_x = np.arange(min(np.min(c_1[:, 0]), np.min(c_2[:, 0])),
max(np.max(c_1[:, 0]), np.max(c_2[:, 0])),
step=1)

line_y = - (w[0] * line_x) / w[1]
plt.plot(line_x, line_y)
plt.show()

最后一步【贴图】
这里写图片描述

最后的最后,大家只要把上面所有的代码复制粘贴到一个文件夹下,在python3 环境下运行就好了。本人调试运行的环境为:

这篇关于fisher判别分析原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514848

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到