kitti数据集:kitti_raw_data中“calib_cam_to_cam.txt”文件内容解释

2023-12-20 04:40

本文主要是介绍kitti数据集:kitti_raw_data中“calib_cam_to_cam.txt”文件内容解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来自:http://www.cvlibs.net/publications/Geiger2013IJRR.pdf

calib_cam_to_cam.txt:

calib_time: 09-Jan-2012 13:57:47
corner_dist: 9.950000e-02
S_00: 1.392000e+03 5.120000e+02
K_00: 9.842439e+02 0.000000e+00 6.900000e+02 0.000000e+00 9.808141e+02 2.331966e+02 0.000000e+00 0.000000e+00 1.000000e+00
D_00: -3.728755e-01 2.037299e-01 2.219027e-03 1.383707e-03 -7.233722e-02
R_00: 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
T_00: 2.573699e-16 -1.059758e-16 1.614870e-16
S_rect_00: 1.242000e+03 3.750000e+02
R_rect_00: 9.999239e-01 9.837760e-03 -7.445048e-03 -9.869795e-03 9.999421e-01 -4.278459e-03 7.402527e-03 4.351614e-03 9.999631e-01
P_rect_00: 7.215377e+02 0.000000e+00 6.095593e+02 0.000000e+00 0.000000e+00 7.215377e+02 1.728540e+02 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00
S_01: 1.392000e+03 5.120000e+02
K_01: 9.895267e+02 0.000000e+00 7.020000e+02 0.000000e+00 9.878386e+02 2.455590e+02 0.000000e+00 0.000000e+00 1.000000e+00
D_01: -3.644661e-01 1.790019e-01 1.148107e-03 -6.298563e-04 -5.314062e-02
R_01: 9.993513e-01 1.860866e-02 -3.083487e-02 -1.887662e-02 9.997863e-01 -8.421873e-03 3.067156e-02 8.998467e-03 9.994890e-01
T_01: -5.370000e-01 4.822061e-03 -1.252488e-02
S_rect_01: 1.242000e+03 3.750000e+02
R_rect_01: 9.996878e-01 -8.976826e-03 2.331651e-02 8.876121e-03 9.999508e-01 4.418952e-03 -2.335503e-02 -4.210612e-03 9.997184e-01
P_rect_01: 7.215377e+02 0.000000e+00 6.095593e+02 -3.875744e+02 0.000000e+00 7.215377e+02 1.728540e+02 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00
S_02: 1.392000e+03 5.120000e+02
K_02: 9.597910e+02 0.000000e+00 6.960217e+02 0.000000e+00 9.569251e+02 2.241806e+02 0.000000e+00 0.000000e+00 1.000000e+00
D_02: -3.691481e-01 1.968681e-01 1.353473e-03 5.677587e-04 -6.770705e-02
R_02: 9.999758e-01 -5.267463e-03 -4.552439e-03 5.251945e-03 9.999804e-01 -3.413835e-03 4.570332e-03 3.389843e-03 9.999838e-01
T_02: 5.956621e-02 2.900141e-04 2.577209e-03
S_rect_02: 1.242000e+03 3.750000e+02
R_rect_02: 9.998817e-01 1.511453e-02 -2.841595e-03 -1.511724e-02 9.998853e-01 -9.338510e-04 2.827154e-03 9.766976e-04 9.999955e-01
P_rect_02: 7.215377e+02 0.000000e+00 6.095593e+02 4.485728e+01 0.000000e+00 7.215377e+02 1.728540e+02 2.163791e-01 0.000000e+00 0.000000e+00 1.000000e+00 2.745884e-03
S_03: 1.392000e+03 5.120000e+02
K_03: 9.037596e+02 0.000000e+00 6.957519e+02 0.000000e+00 9.019653e+02 2.242509e+02 0.000000e+00 0.000000e+00 1.000000e+00
D_03: -3.639558e-01 1.788651e-01 6.029694e-04 -3.922424e-04 -5.382460e-02
R_03: 9.995599e-01 1.699522e-02 -2.431313e-02 -1.704422e-02 9.998531e-01 -1.809756e-03 2.427880e-02 2.223358e-03 9.997028e-01
T_03: -4.731050e-01 5.551470e-03 -5.250882e-03
S_rect_03: 1.242000e+03 3.750000e+02
R_rect_03: 9.998321e-01 -7.193136e-03 1.685599e-02 7.232804e-03 9.999712e-01 -2.293585e-03 -1.683901e-02 2.415116e-03 9.998553e-01
P_rect_03: 7.215377e+02 0.000000e+00 6.095593e+02 -3.395242e+02 0.000000e+00 7.215377e+02 1.728540e+02 2.199936e+00 0.000000e+00 0.000000e+00 1.000000e+00 2.729905e-03

其中:
- S_xx:1x2 矫正前的图像xx的大小
- K_xx:3x3 矫正前摄像机xx的校准矩阵
- D_xx:1x5 矫正前摄像头xx的失真向量
- R_xx:3x3 (外部)的旋转矩阵(从相机0到相机xx)
- T_xx:3x1 (外部)的平移矢量(从相机0到相机xx)
- S_rect_xx:1x2 矫正后的图像xx的大小
- R_rect_xx:3x3 纠正旋转矩阵(使图像平面共面)
- P_rect_xx:3x4 矫正后的投影矩阵

xx:00,01,02,03 代表相机的编号,0表示左边灰度相机,1右边灰度相机,2左边彩色相机,3右边彩色相机。

这里写图片描述

根据calib.txt相机投影矩阵可以得到相机内参。
b(i) 代表其他相机相对于cam 0的偏移。
故此可以得到相机参数:

fu = 718.856
fv = 718.856
cu = 607.1928
cv = 185.2157

其中此处相机内参矩阵(Camera Intrinsics)

fx = 718.856
fy = 718.856
cx = 607.1928
cy = 185.2157

https://blog.csdn.net/qq_33801763/article/details/78959205

如图-3所示为传感器的配置平面图。为了生成双目立体图像,相同类型的摄像头相距54cm安装。由于彩色摄像机的分辨率和对比度不够好,所以还使用了两个立体灰度摄像机,它和彩色摄像机相距6cm安装。为了方便传感器数据标定,规定坐标系方向如下[2] :
• Camera: x = right, y = down, z = forward
• Velodyne: x = forward, y = left, z = up
• GPS/IMU: x = forward, y = left, z = up
这里写图片描述

https://blog.csdn.net/solomon1558/article/details/70173223

这篇关于kitti数据集:kitti_raw_data中“calib_cam_to_cam.txt”文件内容解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514796

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建