【七月Python入门】 第五课面文件访问与函数式编程入门

2023-12-20 01:48

本文主要是介绍【七月Python入门】 第五课面文件访问与函数式编程入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.文本文件读写三种方法:

(1)直接读入

file1 = open("test.txt") 
file2 = open("output.txt","w") while True: line = file1.readline() #这里可以进行逻辑处理 file2.write('"'+line[:s]+'"'+",") if not line: break 
#记住文件处理完,关闭是个好习惯 
file1.close() 
file2.close() 
注意: read()将文本文件所有行读到一个字符串中。  readline()是一行一行的读 。 readlines()是将文本文件中所有行读到一个list中,文本文件每一行是list的一个元素。 优点:readline()可以在读行过程中跳过特定行。


(2)文件迭代器,用for循环的方法

file2 = open("output.txt","w") 
for line in open("test.txt"): #这里可以进行逻辑处理 file2.write('"'+line[:s]+'"'+",")


(3)文件上下文管理器 (好处在于不需要自己关闭文件)

#打开文件
#用with..open自带关闭文本的功能
with open('somefile.txt', 'r') as f: data = f.read() # loop整个文档
with open('somefile.txt', 'r') as f: for line in f: # 处理每一行# 写入文本 
with open('somefile.txt', 'w') as f: f.write(text1) f.write(text2) ... # 把要打印的line写入文件中 
with open('somefile.txt', 'w') as f: print(line1, file=f) print(line2, file=f)

2.二进制文件读写:python默认的是文本文件的读写,如果要二进制文件读写,需要加上‘b’。例如: 需要把刚刚的'r'改成'rb'。

f = open('EDC.jpg', 'rb')
print(f.read())
# 输出 '\xff\xd8\xff\xe1\x00\x18Exif\x00\x00...' # 十六进制表示的字节
需要用二进制读入这个文件,然后再用 .decode('...')的方法来解码这个二进制文件:

f = open('DegangGuo.txt', 'rb')
# 读入郭德纲老师的作文, 但是郭老师用的是参合着错别字的繁体编码,假设叫个"DeyunCode"
# 那么你读入以后,就需要解码它
u = f.read().decode('DeyunCode')


3. 通过os.path.split()函数,这样可以把一个路径拆分为两部分,后一部分总是最后级别的目录或文件名:

os.path.split('/Users/EDC/Pictures/AJiao.avi')
# ('/Users/EDC/Pictures/', 'AJiao.avi')

os.path.splitext()得到文件扩展名:

os.path.splitext('/Users/EDC/Pictures/AJiao.avi')
# ('/Users/EDC/Pictures/AJiao', '.avi')

4.什么是序列化?

程序运行的过程中,所有变量都是在内存中操作的,当程序一旦执行完毕,结束退出后,变量占有的内存就被操作系统回收了。 因此我们需要将某些数据持久化存储到磁盘中,下次运行的时候从磁盘中读取相关数据。我们将变量从内存中变成可以存储或传输的过程称之为序列化,在Python中叫做pickling,在其它语言中也称之为 serialization、marshaling、flattening等等,说的都是一个意思。 反之,则为反序列化,称之为unpickling,把变量内容从序列化的对象重新读取到内存中。

序列化:

import pickle# 此处定义一个dict字典对象
d = dict(name='思聪', age=29, score=80)
str = pickle.dumps(d) # 调用pickle的dumps函数进行序列化处理
print(str)
# 你可以看看它长什么样子# 定义和创建一个file文件对象,设定模式为wb
f = open('dump.txt', 'wb')
# 将内容序列化写入到file文件中
pickle.dump(d, f)
f.close() # 最后关闭掉文件资源

反序列化:

import pickle# 从之前序列化的dump.txt文件里边读取内容
f = open('dump.txt', 'rb') # 设定文件选项模式为rb
d = pickle.load(f) # 调用load做反序列处理过程
f.close() # 关闭文件资源
print(d)
print('name is %s' % d['name'])


5. 我们可以用JSON来做序列化。Python的数据结构跟Json有非常完美的兼容:
JSON类型 Python类型
{} dict
[] list
"string" 'str'或者u'unicode'
1234.56 int或float
true/false True/False
null None

如果你有一个比较结构化的数据想要序列化,并且想要别的地方别的语言也能看得懂。那么你可以用JSON来做:

import json# 定义dict字典对象
d1 = dict(name='小王', age=20, score=80)
str = json.dumps(d1) # 调用json的dumps函数进行json序列化处理
print(str)# 调用json的loads函数进行反序列化处理
d2 = json.loads(str)


6.可以把别的函数作为参数传入的函数叫高阶函数。


7.python 使用 lambda 来创建匿名函数。lambda只是一个表达式,函数体比def简单很多。lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。lambda函数拥有自己的命名空间,且不能访问自有参数列表之外或全局命名空间里的参数。虽然lambda函数看起来只能写一行,却不等同于C或C++的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。Lambda函数的语法只包含一个语句,如下:

lambda [arg1 [,arg2,.....argn]]:expression

sum = lambda arg1, arg2: arg1 + arg2sum(10, 20)


8.除了lambda,还有其他的辅助函数。p ython中的reduce内建函数是一个二元操作函数,他用来将一个数据集合(列表,元组等)中的所有数据进行如下操作:传给reduce中的函数func() (必须是一个二元操作函数)先对集合中的第1,2个数据进行操作,得到的结果再与第三个数据用func()函数运算,最后得到一个结果。

from functools import reducel = [1,2,3,4,5]
print(reduce(lambda x,y: x+y, l))
# 这里代表着,把list中的值,一个个放进lamda的x,y中# 如果你给出一个初始值,可以放在list后面
print(reduce(lambda x,y: x+y, l, 10))
# 这样,x开始的时候被赋值为10,然后依次


9. map函数应用于每一个可迭代的项,返回的是一个结果list。如果有其他的可迭代参数传进来,map函数则会把每一个参数都以相应的处理函数进行迭代处理。map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。 格式:map(func, seq1[, seq2...] )

l = [1,2,3]
new_list = list(map(lambda i: i+1, l))
print(new_list)
# Py3里,外面需要套个list:
# 这是为了让里面的值给显示出来,要不然你会得到这是个map函数
# 而不是里面的值。
# Py2的童鞋不虚# 我们也可以把两个数组搞成一个单独的数组
l2 = [4,5,6]
new_list = list(map(lambda x,y: x+y, l, l2))
print(new_list)

10. filter()函数可以对序列做过滤处理,就是说可以使用一个自定的函数过滤一个序列,把序列的每一项传到自定义的过滤函数里处理,并返回结果做过滤。最终一次性返回过滤后的结果。 和map()类似,filter()也接收一个函数和一个序列。和map()不同的时,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

l = [100, 20, 24, 50, 110]
new = list(filter(lambda x: x<50, l))
# 同理,py3得套个list来转化成list函数,便于打印出来
print(new)


11.偏函数: 偏函数又可以翻译成部分函数,大概意思就是说,只设置一部分参数。functools.partial就是帮助我们创建一个偏函数的:

import functoolsint2 = functools.partial(int, base=2)
int2('1000000')



这篇关于【七月Python入门】 第五课面文件访问与函数式编程入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514424

相关文章

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: