《统计学习方法》第三章:k-近邻算法(K-Nearest Neighbors)

2023-12-19 14:18

本文主要是介绍《统计学习方法》第三章:k-近邻算法(K-Nearest Neighbors),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

监督学习,多分类、回归

计算输入点与数据集点距离,升序排序,选取数据集里前k个点,计算这k个点对应类别(也就是label)出现的概率,最大概率的分类就是输入点的分类。

目录

一、分类问题

二、监督学习

三、KNN算法原理和流程

1、工作原理

2、一般流程

3、距离计算

4、k值的选择

1)如果选择较小的K值

2)如果选择较大的K值

三、Python代码

1、数据导入

2、算法和关键函数

1)分类算法流程和关键函数

2)文本中解析数据

3)用matplotlib绘制散点图

4)数据归一化

5)使用k-近邻算法的手写识别系统

6)测试算法

3、分类算法

1)分类算法流程

2)kNN中分类算法

四、kNN算法改进

1、KNN面临的挑战

2、算法改进

1)距离度量

2)KD树


一、分类问题

             

二、监督学习

                        

三、KNN算法原理和流程

                

1、工作原理

  • 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系

  • 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签

  • 一般来说,只选择样本数据集中前N个最相似的数据。分类数K一般不大于20,最后,选择k个中出现次数最多的分类,作为新数据的分类。

2、一般流程

  1. 收集数据:可以使用任何方法

  2. 准备数据:距离计算所需要的数值,最后是结构化的数据格式。

  3. 分析数据:可以使用任何方法

  4. 训练算法:(此步骤kNN)中不适用

  5. 测试算法:计算错误率

  6. 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

3、距离计算

                 

          

p=1对应最里面的棱形;p=2对应中间的圆;p=∞对应外面的矩形

4、k值的选择

1)如果选择较小的K

  • “学习”的近似误差(approximation error)会减小,但 “学习”的估计误差(estimation error) 会增大
  • 噪声敏感
  • K值的减小就意味着整体模型变得复杂,容易发生过拟合

2)如果选择较大的K

  • 减少学习的估计误差,但缺点是学习的近似误差会增大
  • K值的增大,就意味着整体的模型变得简单

三、Python代码

1、数据导入

from numpy import *
import operator
def createDataSet():group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])labels=['A','A','B','B']return group,lablesgroup,labels=kNN.createDataSet()

 Python 数组和numpy矩阵的关系:

>>> a=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]
>>> c=zeros((3,4))
>>> c
array([[ 0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.]])
>>> c[0,:]=a[0]
>>> c
array([[ 1.,  2.,  3.,  4.],[ 0.,  0.,  0.,  0.],[ 0.,  0.,  0.,  0.]])

2、算法和关键函数

1)分类算法流程和关键函数

  • Shape
group,labels=kNN.createDataSet()
group.shape
group.shape[0]# shape用法
import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
#输出数组的行和列数
print x.shape  #结果: (4, 3)
#只输出行数
print x.shape[0] #结果: 4
#只输出列数
print x.shape[1] #结果: 3
  • Tile
tile([1.0,1.2],(4,1))
# 输出
array([[ 1. ,  1.2],[ 1. ,  1.2],[ 1. ,  1.2],[ 1. ,  1.2]])
tile([1.0,1.2],(4,1))-group
#输出
array([[ 0. ,  0.1],[ 0. ,  0.2],[ 1. ,  1.2],[ 1. ,  1.1]])
a=(tile([1.0,1.2],(4,1))-group)**2
#输出
array([[ 0.  ,  0.01],[ 0.  ,  0.04],[ 1.  ,  1.44],[ 1.  ,  1.21]])
  • Argsort
b=a.sum(axis=1)
c=b**0.5
d=c.argsort()
>>> d
array([0, 1, 3, 2])
  • 字典的使用
classCount={}          #字典for i in range(k):    #列表的扩展voteIlabel = labels[sortedDistIndicies[i]]classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]kNN.classify0([0,0.2],group,labels,3)
>>'B'

2)文本中解析数据

  • 文件读取相关函数Open()、Readlines、Zeros()

3)用matplotlib绘制散点图

import matplotlib
>>> import matplotlib.pyplot as plt>>> fig=plt.figure()
>>> ax=fig.add_subplot(111)
>>> ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
<matplotlib.collections.PathCollection object at 0x01D8F590>
>>> plt.show()>>> fig=plt.figure()
>>> ax=fig.add_subplot(111)
>>>ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
>>> plt.show()

4)数据归一化

def autoNorm(dataSet):minVals = dataSet.min(0)maxVals = dataSet.max(0)ranges = maxVals - minValsnormDataSet = zeros(shape(dataSet))m = dataSet.shape[0]normDataSet = dataSet - tile(minVals, (m,1))normDataSet = normDataSet/tile(ranges, (m,1))   #element wise dividereturn normDataSet, ranges, minVals>>> n,r,m=kNN.autoNorm(datingDataMat)
>>> n
array([[ 0.44832535,  0.39805139,  0.56233353],[ 0.15873259,  0.34195467,  0.98724416],[ 0.28542943,  0.06892523,  0.47449629],..., [ 0.29115949,  0.50910294,  0.51079493],[ 0.52711097,  0.43665451,  0.4290048 ],[ 0.47940793,  0.3768091 ,  0.78571804]])
>>> r
array([  9.12730000e+04,   2.09193490e+01,   1.69436100e+00])
>>> m
array([ 0.      ,  0.      ,  0.001156])

5)使用k-近邻算法的手写识别系统

# 准备数据,将图像转换为测试向量 32x32
def img2vector(filename):returnVect = zeros((1,1024))fr = open(filename)for i in range(32):lineStr = fr.readline()for j in range(32):returnVect[0,32*i+j] = int(lineStr[j])return returnVect

6)测试算法

def datingClassTest():hoRatio = 0.50      #hold out 10%datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom filenormMat, ranges, minVals = autoNorm(datingDataMat)m = normMat.shape[0]numTestVecs = int(m*hoRatio)errorCount = 0.0for i in range(numTestVecs):classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])if (classifierResult != datingLabels[i]): errorCount += 1.0print "the total error rate is: %f" % (errorCount/float(numTestVecs))print errorCount>>> testVector=kNN.img2vector('testDigits/0_13.txt')
>>> tesVector[0,0:31]

3、分类算法

1)分类算法流程

对未知类别的数据集中的每个点依次执行以下操作:

  • 计算已知类别数据集众多点与当前点之间的距离
  • 按照距离递增次序排序
  • 选取与当前点距离最小的k个点
  • 群定前k个点所在类别的出现频率

2)kNN中分类算法

def classify0(inX, dataSet, labels, k):dataSetSize = dataSet.shape[0]diffMat = tile(inX, (dataSetSize,1)) - dataSetsqDiffMat = diffMat**2sqDistances = sqDiffMat.sum(axis=1)distances = sqDistances**0.5sortedDistIndicies = distances.argsort()     classCount={}          for item in range(k):voteIlabel = labels[sortedDistIndicies[item]]classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]

四、kNN算法改进

1、KNN面临的挑战

2、算法改进

1)距离度量

马氏距离(Mahalanobis Distance)

                  

马氏距离NUMPY示例:

import numpy
x = numpy.array([[3,4],[5,6],[2,2],[8,4]])
xT = x.T
D = numpy.cov(xT)
invD = numpy.linalg.inv(D)
tp = x[0] – x[1]
print numpy.sqrt(dot(dot(tp, invD), tp.T)) 
Ø P.C. Mahalanobis提出
Ø 基于 样本分布 的一种距离测量
Ø 考虑到各种 特性之间的联系 (例如身高和体重),可以 消除样本间的相关性
Ø 广泛用于 分类 聚类分析

 

2)KD树

  • KD树是一种对 K 维空间中的实例点进行存储以便对其进行 快速检索 的树形数据结构。
  • KD树是 二叉树 ,表示对K 维空间的一个划分( partition), 构造KD 树相当于不断地用垂直于坐标轴的超平面将 k 维空间切分,构成一系列的 k 维超矩形区域, KD 树的每个结点对应于一个 k 维超矩形区域。
构造KD树
KD树搜索

这篇关于《统计学习方法》第三章:k-近邻算法(K-Nearest Neighbors)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/512507

相关文章

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到