FATE —— 二.2.2 Homo-NN内置数据集

2023-12-19 11:10
文章标签 数据 内置 2.2 nn fate homo

本文主要是介绍FATE —— 二.2.2 Homo-NN内置数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在FATE-1.10中,提供了表、nlp_标记器和图像三个数据集,以满足表数据、文本数据和图像数据的基本需求

表数据集

TableDataset在table.py下提供,用于处理csv格式的数据,并将自动从数据中解析id和标签。以下是一些源代码,用于了解此数据集类的用法:

class TableDataset(Dataset):"""A Table Dataset, load data from a give csv path, or transform FATE DTableParameters----------label_col str, name of label column in csv, if None, will automatically take 'y' or 'label' or 'target' as labelfeature_dtype dtype of feature, supports int, long, float, doublelabel_dtype: dtype of label, supports int, long, float, doublelabel_shape: list or tuple, the shape of labelflatten_label: bool, flatten extracted label column or not, default is False"""def __init__(self,label_col=None,feature_dtype='float',label_dtype='float',label_shape=None,flatten_label=False):

标记器数据集

TokenizerDataset是在nlp_tokenizer.py下提供的,它是基于Transformer的BertTokenizer开发的,它可以从csv中读取字符串,同时自动分割文本并将其转换为单词id。

class TokenizerDataset(Dataset):"""A Dataset for some basic NLP Tasks, this dataset will automatically transform raw text into word indicesusing BertTokenizer from transformers library,see https://huggingface.co/docs/transformers/model_doc/bert?highlight=berttokenizer for details of BertTokenizerParameters----------truncation bool, truncate word sequence to 'text_max_length'text_max_length int, max length of word sequencestokenizer_name_or_path str, name of bert tokenizer(see transformers official for details) or path to localtransformer tokenizer folderreturn_label bool, return label or not, this option is for host dataset, when running hetero-NN"""def __init__(self, truncation=True, text_max_length=128,tokenizer_name_or_path="bert-base-uncased",return_label=True):

图像数据集

ImageDataset在image.py下提供,用于简单处理图像数据。它是基于torchvision的ImageFolder开发的。可以看出,使用了该数据集的参数:

class ImageDataset(Dataset):"""A basic Image Dataset built on pytorch ImageFolder, supports simple image transformGiven a folder path, ImageDataset will load images from this folder, images in thisfolder need to be organized in a Torch-ImageFolder format, seehttps://pytorch.org/vision/main/generated/torchvision.datasets.ImageFolder.html for details.Image name will be automatically taken as the sample id.Parameters----------center_crop : bool, use center crop transformercenter_crop_shape: tuple or listgenerate_id_from_file_name: bool, whether to take image name as sample idfile_suffix: str, default is '.jpg', if generate_id_from_file_name is True, will remove this suffix from file name,result will be the sample idreturn_label: bool, return label or not, this option is for host dataset, when running hetero-NNfloat64: bool, returned image tensors will be transformed to double precisionlabel_dtype: str, long, float, or double, the dtype of return label"""def __init__(self, center_crop=False, center_crop_shape=None,generate_id_from_file_name=True, file_suffix='.jpg',return_label=True, float64=False, label_dtype='long'):

使用内置数据集

使用FATE的内置数据集与使用用户自定义数据集完全相同。在这里,我们使用我们的图像数据集和一个具有对流层的新模型来再次解决MNIST手写识别任务,作为示例。

如果您没有MNIST数据集,可以参考前面的教程并下载:Homo-NN自定义数据集

from federatedml.nn.dataset.image import ImageDataset
dataset = ImageDataset()
dataset.load('/mnt/hgfs/mnist/')  # 根据自己得文件位置进行调整
from torch import nn
import torch as t
from torch.nn import functional as F
from pipeline.component.nn.backend.torch.operation import Flatten# a new model with conv layer, it can work with our ImageDataset
model = t.nn.Sequential(nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5),nn.MaxPool2d(kernel_size=3),nn.Conv2d(in_channels=12, out_channels=12, kernel_size=3),nn.AvgPool2d(kernel_size=3),Flatten(start_dim=1),nn.Linear(48, 32),nn.ReLU(),nn.Linear(32, 10),nn.Softmax(dim=1))

本地测试

在本地测试的情况下,将跳过所有联合过程,并且模型将不执行fed平均
from federatedml.nn.homo.trainer.fedavg_trainer import FedAVGTrainer
trainer = FedAVGTrainer(epochs=5, batch_size=256, shuffle=True, data_loader_worker=8, pin_memory=False) # 参数
trainer.set_model(model)
trainer.local_mode() 
optimizer = t.optim.Adam(model.parameters(), lr=0.01)
loss = t.nn.CrossEntropyLoss()
trainer.train(train_set=dataset,optimizer=optimizer, loss=loss)

它可以工作,现在可以执行联合任务了

具有内置数据集的Homo NN任务

import torch as t
from torch import nn
from pipeline import fate_torch_hook
from pipeline.component import HomoNN
from pipeline.backend.pipeline import PipeLine
from pipeline.component import Reader, Evaluation, DataTransform
from pipeline.interface import Data, Modelt = fate_torch_hook(t)
import os
# bind data path to name & namespace
fate_project_path = os.path.abspath('../')
host = 10000
guest = 9999
arbiter = 10000
pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host,arbiter=arbiter)data_0 = {"name": "mnist_guest", "namespace": "experiment"}
data_1 = {"name": "mnist_host", "namespace": "experiment"}
# 这里需要根据自己得版本作出调整,否则文件参数上传失败会报错
data_path_0 = fate_project_path + '/examples/data/mnist_train'
data_path_1 = fate_project_path + '/examples/data/mnist_train'
pipeline.bind_table(name=data_0['name'], namespace=data_0['namespace'], path=data_path_0)
pipeline.bind_table(name=data_1['name'], namespace=data_1['namespace'], path=data_path_1)

{'namespace': 'experiment', 'table_name': 'mnist_host'}

# 定义reader
reader_0 = Reader(name="reader_0")
reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=data_0)
reader_0.get_party_instance(role='host', party_id=host).component_param(table=data_1)
from pipeline.component.homo_nn import DatasetParam, TrainerParam # a new model with conv layer, it can work with our ImageDataset
model = t.nn.Sequential(nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5),nn.MaxPool2d(kernel_size=3),nn.Conv2d(in_channels=12, out_channels=12, kernel_size=3),nn.AvgPool2d(kernel_size=3),Flatten(start_dim=1),nn.Linear(48, 32),nn.ReLU(),nn.Linear(32, 10),nn.Softmax(dim=1))nn_component = HomoNN(name='nn_0',model=model, # modelloss=t.nn.CrossEntropyLoss(),  # lossoptimizer=t.optim.Adam(model.parameters(), lr=0.01), # optimizerdataset=DatasetParam(dataset_name='image', label_dtype='long'),  # datasettrainer=TrainerParam(trainer_name='fedavg_trainer', epochs=2, batch_size=1024, validation_freqs=1),torch_seed=100 # random seed)
pipeline.add_component(reader_0)
pipeline.add_component(nn_component, data=Data(train_data=reader_0.output.data))
pipeline.add_component(Evaluation(name='eval_0', eval_type='multi'), data=Data(data=nn_component.output.data))
pipeline.compile()
pipeline.fit()

这篇关于FATE —— 二.2.2 Homo-NN内置数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511947

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock