FATE —— 二.2.2 Homo-NN内置数据集

2023-12-19 11:10
文章标签 数据 内置 2.2 nn fate homo

本文主要是介绍FATE —— 二.2.2 Homo-NN内置数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在FATE-1.10中,提供了表、nlp_标记器和图像三个数据集,以满足表数据、文本数据和图像数据的基本需求

表数据集

TableDataset在table.py下提供,用于处理csv格式的数据,并将自动从数据中解析id和标签。以下是一些源代码,用于了解此数据集类的用法:

class TableDataset(Dataset):"""A Table Dataset, load data from a give csv path, or transform FATE DTableParameters----------label_col str, name of label column in csv, if None, will automatically take 'y' or 'label' or 'target' as labelfeature_dtype dtype of feature, supports int, long, float, doublelabel_dtype: dtype of label, supports int, long, float, doublelabel_shape: list or tuple, the shape of labelflatten_label: bool, flatten extracted label column or not, default is False"""def __init__(self,label_col=None,feature_dtype='float',label_dtype='float',label_shape=None,flatten_label=False):

标记器数据集

TokenizerDataset是在nlp_tokenizer.py下提供的,它是基于Transformer的BertTokenizer开发的,它可以从csv中读取字符串,同时自动分割文本并将其转换为单词id。

class TokenizerDataset(Dataset):"""A Dataset for some basic NLP Tasks, this dataset will automatically transform raw text into word indicesusing BertTokenizer from transformers library,see https://huggingface.co/docs/transformers/model_doc/bert?highlight=berttokenizer for details of BertTokenizerParameters----------truncation bool, truncate word sequence to 'text_max_length'text_max_length int, max length of word sequencestokenizer_name_or_path str, name of bert tokenizer(see transformers official for details) or path to localtransformer tokenizer folderreturn_label bool, return label or not, this option is for host dataset, when running hetero-NN"""def __init__(self, truncation=True, text_max_length=128,tokenizer_name_or_path="bert-base-uncased",return_label=True):

图像数据集

ImageDataset在image.py下提供,用于简单处理图像数据。它是基于torchvision的ImageFolder开发的。可以看出,使用了该数据集的参数:

class ImageDataset(Dataset):"""A basic Image Dataset built on pytorch ImageFolder, supports simple image transformGiven a folder path, ImageDataset will load images from this folder, images in thisfolder need to be organized in a Torch-ImageFolder format, seehttps://pytorch.org/vision/main/generated/torchvision.datasets.ImageFolder.html for details.Image name will be automatically taken as the sample id.Parameters----------center_crop : bool, use center crop transformercenter_crop_shape: tuple or listgenerate_id_from_file_name: bool, whether to take image name as sample idfile_suffix: str, default is '.jpg', if generate_id_from_file_name is True, will remove this suffix from file name,result will be the sample idreturn_label: bool, return label or not, this option is for host dataset, when running hetero-NNfloat64: bool, returned image tensors will be transformed to double precisionlabel_dtype: str, long, float, or double, the dtype of return label"""def __init__(self, center_crop=False, center_crop_shape=None,generate_id_from_file_name=True, file_suffix='.jpg',return_label=True, float64=False, label_dtype='long'):

使用内置数据集

使用FATE的内置数据集与使用用户自定义数据集完全相同。在这里,我们使用我们的图像数据集和一个具有对流层的新模型来再次解决MNIST手写识别任务,作为示例。

如果您没有MNIST数据集,可以参考前面的教程并下载:Homo-NN自定义数据集

from federatedml.nn.dataset.image import ImageDataset
dataset = ImageDataset()
dataset.load('/mnt/hgfs/mnist/')  # 根据自己得文件位置进行调整
from torch import nn
import torch as t
from torch.nn import functional as F
from pipeline.component.nn.backend.torch.operation import Flatten# a new model with conv layer, it can work with our ImageDataset
model = t.nn.Sequential(nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5),nn.MaxPool2d(kernel_size=3),nn.Conv2d(in_channels=12, out_channels=12, kernel_size=3),nn.AvgPool2d(kernel_size=3),Flatten(start_dim=1),nn.Linear(48, 32),nn.ReLU(),nn.Linear(32, 10),nn.Softmax(dim=1))

本地测试

在本地测试的情况下,将跳过所有联合过程,并且模型将不执行fed平均
from federatedml.nn.homo.trainer.fedavg_trainer import FedAVGTrainer
trainer = FedAVGTrainer(epochs=5, batch_size=256, shuffle=True, data_loader_worker=8, pin_memory=False) # 参数
trainer.set_model(model)
trainer.local_mode() 
optimizer = t.optim.Adam(model.parameters(), lr=0.01)
loss = t.nn.CrossEntropyLoss()
trainer.train(train_set=dataset,optimizer=optimizer, loss=loss)

它可以工作,现在可以执行联合任务了

具有内置数据集的Homo NN任务

import torch as t
from torch import nn
from pipeline import fate_torch_hook
from pipeline.component import HomoNN
from pipeline.backend.pipeline import PipeLine
from pipeline.component import Reader, Evaluation, DataTransform
from pipeline.interface import Data, Modelt = fate_torch_hook(t)
import os
# bind data path to name & namespace
fate_project_path = os.path.abspath('../')
host = 10000
guest = 9999
arbiter = 10000
pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host,arbiter=arbiter)data_0 = {"name": "mnist_guest", "namespace": "experiment"}
data_1 = {"name": "mnist_host", "namespace": "experiment"}
# 这里需要根据自己得版本作出调整,否则文件参数上传失败会报错
data_path_0 = fate_project_path + '/examples/data/mnist_train'
data_path_1 = fate_project_path + '/examples/data/mnist_train'
pipeline.bind_table(name=data_0['name'], namespace=data_0['namespace'], path=data_path_0)
pipeline.bind_table(name=data_1['name'], namespace=data_1['namespace'], path=data_path_1)

{'namespace': 'experiment', 'table_name': 'mnist_host'}

# 定义reader
reader_0 = Reader(name="reader_0")
reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=data_0)
reader_0.get_party_instance(role='host', party_id=host).component_param(table=data_1)
from pipeline.component.homo_nn import DatasetParam, TrainerParam # a new model with conv layer, it can work with our ImageDataset
model = t.nn.Sequential(nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5),nn.MaxPool2d(kernel_size=3),nn.Conv2d(in_channels=12, out_channels=12, kernel_size=3),nn.AvgPool2d(kernel_size=3),Flatten(start_dim=1),nn.Linear(48, 32),nn.ReLU(),nn.Linear(32, 10),nn.Softmax(dim=1))nn_component = HomoNN(name='nn_0',model=model, # modelloss=t.nn.CrossEntropyLoss(),  # lossoptimizer=t.optim.Adam(model.parameters(), lr=0.01), # optimizerdataset=DatasetParam(dataset_name='image', label_dtype='long'),  # datasettrainer=TrainerParam(trainer_name='fedavg_trainer', epochs=2, batch_size=1024, validation_freqs=1),torch_seed=100 # random seed)
pipeline.add_component(reader_0)
pipeline.add_component(nn_component, data=Data(train_data=reader_0.output.data))
pipeline.add_component(Evaluation(name='eval_0', eval_type='multi'), data=Data(data=nn_component.output.data))
pipeline.compile()
pipeline.fit()

这篇关于FATE —— 二.2.2 Homo-NN内置数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_62375097/article/details/128590283
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/511947

相关文章

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的