路透社新闻分类--自然语言处理

2023-12-19 09:10

本文主要是介绍路透社新闻分类--自然语言处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

路透社新闻分类

  1. 数据准备和载入
  2. 查看文件基本信息
  3. 创建网络模型
  4. 训练网络模型
  5. 词向量预训练与模型优化
embedding_matrix = pd.read_csv('embedding_matrix.csv')
embedding_matrix

在这里插入图片描述

import numpy as np
import pandas as pd
from tkinter import _flatten
import tensorflow as tfembedding_matrix = pd.read_csv('embedding_matrix.csv')
data = np.load('reuters.npz', allow_pickle=True)
data.files   # 查看数据文件中的数据信息
X = data['x']   # 样本自变量
y = data['y']   # 样本标签(新闻主题类别)
pd.Series(X).apply(len).describe()   # 统计新闻词语数量的分布

在这里插入图片描述

wordList = _flatten(X.tolist())      # 将所有新闻报道转为一个一维元组
len(list(set(wordList)))             # 对单词编码去重并统计单词数量

30979

X_padding = tf.keras.preprocessing.sequence.pad_sequences(X, maxlen=200, padding='post')   # 执行padding操作

搭建RNN模型结构

input_shape=(200, )#文档长度
mask_zero=True
trainable=False不训练这个embedding
预训练embedding
30980*128=3965440就是我们要训练的参数的个数,即参数规模,这个参数是网络输出过程中的中间产物

# 搭建RNN神经网络模型
model = tf.keras.models.Sequential([tf.keras.layers.Embedding(30980, 128, input_shape=(200, ), mask_zero=True,weights=[embedding_matrix.values], trainable=False),tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)),tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),tf.keras.layers.Dense(64, activation='relu'),tf.keras.layers.Dense(46, activation='softmax')
])
model.summary()   # 查看网络结构

在这里插入图片描述

训练网络模型从而实现文本分类

# 网络模型训练参数设置
model.compile(loss='sparse_categorical_crossentropy',optimizer=tf.keras.optimizers.Adam(1e-4),metrics=['accuracy'])
model.fit(X_padding, y, validation_split=0.2, epochs=5, batch_size=8)   # 模型训练

在这里插入图片描述

这篇关于路透社新闻分类--自然语言处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511648

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路