keras实现路透社新闻主体的分类

2023-12-19 09:10

本文主要是介绍keras实现路透社新闻主体的分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

keras实现路透社新闻主体的分类

参考书目:《Python深度学习》。
Just for fun!!!

import keras
from keras.datasets import reuters
import matplotlib.pyplot as plt
import numpy as np

Using TensorFlow backend.

1 加载路透社数据集

(train_data,train_label),(test_data,test_label)=reuters.load_data(num_words=10000)

1.1 分割训练集和测试集(切片)

val_data=train_data[:1000]
train_data=train_data[1000:]
val_label=train_label[:1000]
train_label=train_label[1000:]
print(train_data.shape)
print(test_data.shape)
len(train_data[0])

(7982,)
(2246,)
626

1.2 将索引解码为新闻文本

word_index=reuters.get_word_index()
rev_word_index=dict([(value,key) for (key,value) in word_index.items()])
dec=' '.join([rev_word_index.get(i-3,'?') for i in train_data[1]])
dec

‘? qtly div 19 cts vs 19 cts prior pay april 15 record april one reuter 3’

2 数据编码(one-hot)

def one_hot(seq,dim=10000):res=np.zeros((len(seq),dim))for i,j in enumerate(seq):res[i,j]=1return res

2.1 data编码

train_data=one_hot(train_data)
val_data=one_hot(val_data)
test_data=one_hot(test_data)

2.2 label编码

train_label=keras.utils.to_categorical(train_label)
val_label=keras.utils.to_categorical(val_label)
test_label=keras.utils.to_categorical(test_label)

3 构建模型架构

model=keras.models.Sequential()
model.add(keras.layers.Dense(64,activation='relu',input_shape=(10000,)))
model.add(keras.layers.Dense(64,activation='relu'))
model.add(keras.layers.Dense(46,activation='softmax'))

4 定义优化器和损失函数

model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

5 训练+验证

his=model.fit(train_data,train_label,epochs=20,batch_size=512,validation_data=(val_data,val_label))
Train on 7982 samples, validate on 1000 samples
Epoch 1/20
7982/7982 [==============================] - 2s 292us/step - loss: 2.5309 - acc: 0.4959 - val_loss: 1.7227 - val_acc: 0.6110
Epoch 2/20
7982/7982 [==============================] - 1s 179us/step - loss: 1.4463 - acc: 0.6877 - val_loss: 1.3463 - val_acc: 0.7060
Epoch 3/20
7982/7982 [==============================] - 1s 170us/step - loss: 1.0953 - acc: 0.7648 - val_loss: 1.1710 - val_acc: 0.7440
Epoch 4/20
7982/7982 [==============================] - 1s 168us/step - loss: 0.8697 - acc: 0.8161 - val_loss: 1.0806 - val_acc: 0.7580
Epoch 5/20
7982/7982 [==============================] - 1s 174us/step - loss: 0.7030 - acc: 0.8472 - val_loss: 0.9834 - val_acc: 0.7820
Epoch 6/20
7982/7982 [==============================] - 2s 192us/step - loss: 0.5660 - acc: 0.8796 - val_loss: 0.9419 - val_acc: 0.8020
Epoch 7/20
7982/7982 [==============================] - 1s 181us/step - loss: 0.4578 - acc: 0.9048 - val_loss: 0.9090 - val_acc: 0.8010
Epoch 8/20
7982/7982 [==============================] - 1s 167us/step - loss: 0.3691 - acc: 0.9231 - val_loss: 0.9381 - val_acc: 0.7890
Epoch 9/20
7982/7982 [==============================] - 1s 165us/step - loss: 0.3030 - acc: 0.9312 - val_loss: 0.8910 - val_acc: 0.8090
Epoch 10/20
7982/7982 [==============================] - 1s 165us/step - loss: 0.2537 - acc: 0.9416 - val_loss: 0.9066 - val_acc: 0.8120
Epoch 11/20
7982/7982 [==============================] - 1s 168us/step - loss: 0.2182 - acc: 0.9469 - val_loss: 0.9192 - val_acc: 0.8140
Epoch 12/20
7982/7982 [==============================] - 1s 163us/step - loss: 0.1873 - acc: 0.9511 - val_loss: 0.9070 - val_acc: 0.8130
Epoch 13/20
7982/7982 [==============================] - 1s 171us/step - loss: 0.1699 - acc: 0.9523 - val_loss: 0.9364 - val_acc: 0.8070
Epoch 14/20
7982/7982 [==============================] - 1s 167us/step - loss: 0.1535 - acc: 0.9555 - val_loss: 0.9675 - val_acc: 0.8060
Epoch 15/20
7982/7982 [==============================] - 1s 172us/step - loss: 0.1389 - acc: 0.9559 - val_loss: 0.9707 - val_acc: 0.8150
Epoch 16/20
7982/7982 [==============================] - 1s 165us/step - loss: 0.1313 - acc: 0.9559 - val_loss: 1.0249 - val_acc: 0.8050
Epoch 17/20
7982/7982 [==============================] - 1s 173us/step - loss: 0.1218 - acc: 0.9582 - val_loss: 1.0294 - val_acc: 0.7960
Epoch 18/20
7982/7982 [==============================] - 1s 164us/step - loss: 0.1198 - acc: 0.9579 - val_loss: 1.0454 - val_acc: 0.8030
Epoch 19/20
7982/7982 [==============================] - 1s 166us/step - loss: 0.1139 - acc: 0.9598 - val_loss: 1.0980 - val_acc: 0.7980
Epoch 20/20
7982/7982 [==============================] - 1s 172us/step - loss: 0.1112 - acc: 0.9595 - val_loss: 1.0721 - val_acc: 0.8010

6 结果处理与可视化

6.1 提取各种返回参数

his_dict=his.history
loss=his_dict['loss']
val_loss=his_dict['val_loss']
acc=his_dict['acc']
val_acc=his_dict['val_acc']
epoch=range(1,len(loss)+1)

6.2 画出loss的图像

plt.plot(epoch,loss,'b',label='train_loss')
plt.plot(epoch,val_loss,'r',label='val_loss')
plt.title('train and validation')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
plt.show()

在这里插入图片描述

6.3 画出acc的图像

plt.clf()
plt.plot(epoch,acc,'k',label='train_acc')
plt.plot(epoch,val_acc,'g',label='val_acc')
plt.title('train and validation')
plt.xlabel('epoch')
plt.ylabel('acc')
plt.legend()
plt.show()

在这里插入图片描述

7 测试与预测(检验成果)

7.1 测试

test_loss,test_acc=model.evaluate(test_data,test_label)

2246/2246 [==============================] - 0s 197us/step

print('test_loss=',test_loss,'\ntest_acc=',test_acc)

test_loss= 1.216040284741912
test_acc= 0.778717720444884

7.2 预测

prediction=model.predict(test_data)
print('predict_result=',np.argmax(prediction[0]))
print('correct_result=',np.argmax(test_label[0]))

predict_result= 3
correct_result= 3

最终结果还算是可以的吧。。。

这篇关于keras实现路透社新闻主体的分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511647

相关文章

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C