路透社数据集

2023-12-19 09:10
文章标签 数据 路透社

本文主要是介绍路透社数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 路透社数据集简介
  • keras中使用路透社数据集
    • 加载数据集
    • 准备数据
      • 数据样本向量化
      • 标签向量化
    • 创建验证集
    • 构建网络
    • 编译模型
    • 训练模型
    • 绘制训练损失和验证损失
    • 绘制训练精度和验证精度
    • 评估模型
    • 预测

路透社数据集简介

路透社数据集包含许多短新闻及其对应的主题,由路透社在 1986 年发布。它是一个简单的、广泛使用的文本分类数据集。它包括 46 个不同的主题:某些主题的样本更多,但训练集中每个主题都有至少 10 个样本。
有 8982 个训练样本和 2246 个测试样本

keras中使用路透社数据集

与 IMDB 和 MNIST 类似,路透社数据集也内置为 Keras 的一部分

加载数据集

参数 num_words=10000 将数据限定为前 10 000 个最常出现的单词
有 8982 个训练样本和 2246 个测试样本
每个样本都是一个整数列表(表示单词索引)
样本对应的标签是一个 0~45 范围内的整数,即话题索引编号

from keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
# 查看数据
print(len(train_data))
print(len(test_data))
# 输出第十个数据
print(train_data[10])
# 输出第十个数据的标签
print(train_labels[10])

准备数据

数据样本向量化

import numpy as np
# 数据向量化
def vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1.return results
x_train = vectorize_sequences(train_data) 
x_test = vectorize_sequences(test_data)

标签向量化

将标签向量化有两种方法:

  1. 将标签列表转换为整数张量
  2. 使用 one-hot 编码,one-hot 编码是分类数据广泛使用的一种格式,也叫分类编码(categorical encoding)

在这个例子中,标签的 one-hot 编码就是将每个标签表示为全零向量,只有标签索引对应的元素为 1。

# 标签向量化
def to_one_hot(labels, dimension=46):results = np.zeros((len(labels), dimension))for i, label in enumerate(labels):results[i, label] = 1.return results
one_hot_train_labels = to_one_hot(train_labels) 
one_hot_test_labels = to_one_hot(test_labels) 

标签向量化可以使用Keras 内置方法

from keras.utils.np_utils import to_categorical
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

另一种编码标签的方法,就是将其转换为整数张量

y_train = np.array(train_labels)
y_test = np.array(test_labels)

创建验证集

x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

构建网络

网络的最后一层是大小为 46 的 Dense 层。这意味着,对于每个输入样本,网络都会输
出一个 46 维向量。这个向量的每个元素(即每个维度)代表不同的输出类别。
最后一层使用了 softmax 激活。网络将输出在 46个不同输出类别上的概率分布——对于每一个输入样本,网络都会输出一个 46 维向量,其中 output[i] 是样本属于第 i 个类别的概率。46 个概率的总和为 1。
对于这个例子,最好的损失函数是 categorical_crossentropy(分类交叉熵)。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真实分布。通过将这两个分布的距离最小化,训练网络可使输出结果尽可能接近真实标签。

from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

编译模型

使用one-hot编码对标签进行向量化时使用的损失函数为categorical_crossentropy

model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

对于将标签列表转换为整数张量这种编码方法,唯一需要改变的是损失函数的选择。对于整数标签,应该使用sparse_categorical_crossentropy。

model.compile(optimizer='rmsprop',loss='sparse_categorical_crossentropy',metrics=['acc'])

训练模型

history = model.fit(partial_x_train,partial_y_train,epochs=50,batch_size=128,validation_data=(x_val, y_val))

绘制训练损失和验证损失

import matplotlib.pyplot as plt
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

在这里插入图片描述

绘制训练精度和验证精度

在这里插入图片描述

plt.clf()  # 清空图像
acc = history.history['acc']
val_acc = history.history['val_acc']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

评估模型

results = model.evaluate(x_test, one_hot_test_labels)
print(results)

预测

predictions = model.predict(x_test)
print(predictions)

这篇关于路透社数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511645

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒