keras 实现reuters路透社新闻多分类

2023-12-19 09:10

本文主要是介绍keras 实现reuters路透社新闻多分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

路透社reuters话题分类

       来自路透社的11,228条新闻数据集标有46个主题。与IMDB数据集一样,每条线都被编码为一系列字索引。

reuters数据集无法下载,详见本篇博客提供下载和使用:

https://blog.csdn.net/sinat_41144773/article/details/89843688

 代码实现

from keras.datasets import reuters
from keras.utils.np_utils import to_categorical
from keras import models
from keras.layers import LSTM
from keras.layers import Dense,Embedding
import numpy as np
import matplotlib.pyplot as plt
from keras.optimizers import Adam,RMSprop
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score,accuracy_score
# 获取数据
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=8000)# vectorized sequences
def vectorize_sequences(sequences, dimension=8000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1return resultsx_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)# using keras build-in methos to change to one-hot labels
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)# model setup
model = models.Sequential()model.add(Dense(64, activation='relu', input_shape=(8000,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(46, activation='softmax'))# model compile
model.summary()
model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])# validating our apporoach
x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]# training the model
history = model.fit(partial_x_train, partial_y_train, epochs=10, batch_size=256, validation_data=(x_val, y_val))# ploting the training and validation loss
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'g', label='Validating loss')
plt.title('Training and Validating loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()# ploting the training and validation accuracy
# plt.clf()
# acc = history.history['acc']
# val_acc = history.history['val_acc']
# plt.plot(epochs, acc, 'ro', label='Training acc')
# plt.plot(epochs, val_acc, 'r', label='Validating acc')
# plt.title('Training and Validating accuracy')
# plt.xlabel('Epochs')
# plt.ylabel('accuracy')
# plt.legend()
# plt.show()# evaluate loss and accuracy
final_result = model.evaluate(x_test, one_hot_test_labels)
print(final_result)y_predict = model.predict(x_test, batch_size=512, verbose=1)
# y_predict = (y_predict > 0.007).astype(int)
y_predict = (y_predict > 0.01).astype(int)
y_true = np.reshape(one_hot_test_labels, [-1])
y_pred = np.reshape(y_predict, [-1])# 评价指标
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='binary')
f1score = f1_score(y_true, y_pred, average='binary')
micro_f1 = f1_score(y_true, y_pred,average='micro')
macro_f1 = f1_score(y_true, y_pred,average='macro')print('accuracy:',accuracy)
print('precision:',precision)
print('recall:',recall)
print('f1score:',f1score)
print('Macro-F1: {}'.format(macro_f1))
print('Micro-F1: {}'.format(micro_f1))

评价指标+多分类F值:Macro-F1和Micro-F1

accuracy: 0.9427097448604282
precision: 0.26482264054296323
recall: 0.9207479964381122
f1score: 0.4113376429636996
Macro-F1: 0.6906136522606285
Micro-F1: 0.9427097448604282

损失函数loss图

 

结束。

 

这篇关于keras 实现reuters路透社新闻多分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511643

相关文章

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方