《volatile使用与学习总结:2023-12-17》多层面分析学习java关键字--volatile

2023-12-18 17:36

本文主要是介绍《volatile使用与学习总结:2023-12-17》多层面分析学习java关键字--volatile,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

volatile是java中提供的一种轻量级的同步机制,相比于synchronized更加轻量,因为volatile避免了线程频繁的上下文切换和调度,但是也有缺点,同步性差并且使用起来易出错。

二、并发编程的三个概念

  1. 原子性
    原子性即一个操作或者多个操作要不全部执行完(执行过程不被干扰),要不都不执行。
  2. 可见性
    可见性指的是,当一个线程操作一个变量的值时,在其他线程是可以及时看到这个变量修改后的值,并能获取来操作。对比与synchronized和lock,这两者也都能保证可见性,因为它们在每次释放锁之前都会将修改好的变量值更新到主内存中,保证了可见性。
  3. 有序性
    即程序执行的顺序是按照代码的先后顺序来执行的。
    java内存模型中所说的有序性总结为,在本线程中看都是有序执行的,在一个线程看另外一个线程都是无序的,也就是说前半句表示“线程内表现为串型语义”,后面句表示“指令重排序”现象和“主内存与工作内存同步延迟”现象。
    Java的内存模型

三、锁的互斥和可见性

  1. 互斥:即一次只允许一个线程持有某个特定的锁,而且一次只允许一个线程访问共享数据
  2. 锁的可见性:在前一个线程释放锁之前对变量进行更改后,将更改后的变量由工作内存更新到主内存中,保证下一个获得该锁的线程对这个变量具有可见性,如果没有及时更新到主内存中后果很严重,会导致数据不一致问题。
    要让volatile线程安全,必须保证两点
    (1)对变量的写操作不依赖于当前值
    (2)该变量没有包含在具有其他变量的变式中
    事实上就是保证该变量操作的原子性。

四、volatile变量的特性

  1. 保证可见性,不保证原子性
    (1)当写一个变量是,当前线程会将该变量从工作内存强制更新到主内存,保证其他线程实时获取的变量是最新的,保证了可见性。
    (2)这个写操作会导致其他线程中这个变量缓存无效。
  2. 禁止指令重排序
    重排序是程序为了更好地性能调度,对指令进行新的排序的一种手段,需要遵守以下规则
    (1)重排序不会对存在数据依赖关系的程序重排序
    (2)重排序是为了优化性能,但无论怎么排序,在单线程下,从排序后的运算结果都不会改变,但是在多线程下重排序则可能会影响结果
    (3)使用volatile能够禁止指令重排序,但要遵守一些规则。
    1)当执行到volatile修饰的变量进行读或者写时,该操作前面的指令都执行完毕,且该操作结果对后面指令可见,而且该操作后面的指令都未执行
    2)当指令优化时,不能将指令放到volatile后面执行,也不能把把volatile后面的语句放到前面执行。

五、volatile不适合的场景

  1. volatile不适合复合操作,下面模拟十个线程对num自增,每个线程自增1000,
    比如 num++,不是一个原子性操作,分为读取,加,赋值三个操作,所以结果达不到10000
public class VolatileTest1 {private static volatile int num = 0;public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {Thread thread = new Thread(() -> {for (int j = 0; j < 1000; j++) {num++;}});thread.start();}System.out.println("num=" + num);}
}

结果
num=5657
num=4414
num=7491
…(完全随机)

  1. 解决办法
    (1)使用synchornized锁住变量所在的类
public class VolatileTest1 {public static volatile int num = 0;public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {new Thread(new Runnable() {@Overridepublic void run() {for (int j = 0; j < 10000; j++) {synchronized (VolatileTest1.class) {num++;}}}}).start();}// 保证线程执行完毕while (Thread.activeCount() > 1) {Thread.yield();}System.out.println("num=" + num);}
}

结果:
num=100000

(2)使用lock锁住该方法

public class VolatileTest3 {public static volatile int num = 0;public static Lock lock = new ReentrantLock();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {new Thread(new Runnable() {@Overridepublic void run() {for (int j = 0; j < 10000; j++) {lock.lock();try {num++;}finally {lock.unlock();}}}}).start();}// 保证线程执行完毕while (Thread.activeCount() > 1) {Thread.yield();}System.out.println("num=" + num);}
}

结果:
num=100000

(3)使用并发原子操作类AtomicInteger ,其原理是通过CAS循环的方式来保证原子性

public class VolatileTest5 {public static volatile AtomicInteger num = new AtomicInteger(0);public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {new Thread(new Runnable() {@Overridepublic void run() {for (int j = 0; j < 10000; j++) {num.getAndIncrement();}}}).start();}// 保证线程执行完毕while (Thread.activeCount() > 1) {Thread.yield();}System.out.println("num=" + num);}
}

结果:
num=100000

六、单例模式的双重检验锁为什么要加volatile

public class InstanceTest{private volatile static InstanceTest instance;public static InstanceTest getInstance(){   //1if(instance == null){   //2synchronized(InstanceTest.class){   //3if(instance == null){   //4instance = new InstanceTest(); //5}}}return instance;   //6}
}

在并发情况下,如果没有volatile修饰的话,代码中5处会出现问题instance = new InstanceTest();
这个可以分为三步,

a. memory = allocate() //分配内存
b. ctorInstanc(memory) //初始化对象
c. instance = memory   //设置instance指向刚分配的地址

在编译时,指令重排序,不一定按照a->b->c的顺序来执行,可能会是a->c->b,多线程下一个线程在执行完a,马上执行c,设置instance指向刚分配的地址,这个时候另外一个线程刚好到第2步判断,则会出现不为空,直接跳到第6步,而此时并没有初始化,会返回一个未初始化的对象。

七、volatile原理

volatile可以保证线程的可见性并提供一定的有序性,底层采用的是“内存屏障”来实现的,但是不能保证原子性,需要结合lock,synchornized,AtomicInteger 等来实现线程并发安全。
内存屏障会提供三个功能:

  1. 他不会把volatile修饰的变量执行的操作的前面的指令方放到后面,当然相反也不会将后面的指令放到前面。(禁止指令重排序)
  2. 他会强制将当前修改的变量立即写入主缓存
  3. 如果是写操作,他会将其他线程的缓存置为无效

借鉴学习-侵删

这篇关于《volatile使用与学习总结:2023-12-17》多层面分析学习java关键字--volatile的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/509244

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi