信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解

本文主要是介绍信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解

The Flipped Classroom4 of Signals and Linear Systems

对应教材:《信号与线性系统分析(第五版)》高等教育出版社,吴大正著

一、要点

(1)连续LTI系统的微分方程模型及其经典解,了解齐次解+特解的微分方程求解方法;
(2)系统响应的分解:掌握自由(固有)响应/强迫响应、瞬态响应/稳态响应、零输入响应/零状态响应的概念,能够熟练完成系统响应的分解;
(3,重点)0-和0+初始值问题,了解系统初始状态在0时刻产生突变的原因,熟练掌握0+初始值的求解方法;系统微分方程的算子表示法;
(4,重点)系统零输入响应和零状态响应的分别求解,熟练掌握求解方法。

二、问题与解答

1、系统自由响应为什么又被称为固有响应,这种时域响应的模态(随时间的变化规律)主要取决于什么?它与系统外加的输入激励有没有关系?预备训练一的RLC电路,C1取两种不同值的情况下,所得到系统微分方程的特征根有什么不同(列出系统微分方程并求出其特征根)?这种不同对于系统的自由响应模态有何影响?二阶电路(如RLC电路)的过阻尼、欠阻尼、临界阻尼、无阻尼分别对应于特征根的何种情形?

2、试分析以下几个论断的正误:①零输入响应一定是自由响应;②自由响应一定是零输入响应;③零状态响应一定是强迫响应;④零状态响应包括自由响应和强迫响应。

3、为什么“微分方程等号右端含有冲激函数及其各阶导数时,响应y(t)及其各阶导数由0-到0+的瞬间将发生跃变”(教材p45),这反映了冲激或者冲激偶所具有的何种特性?

4、求解教材课后习题2.2(4),据此总结求0-到0+跃变的方法和步骤,特别注意与教材例2.1-3、2.1-4进行比较,说明如何确定等号右端冲激的阶次与等号左端y(t)的最高阶次的对应关系。

5、求解教材课后习题2.4(2),其中零状态响应分别用常规方法(教材例2.1-5方法)和微分特性(教材例2.1-6方法)这两种方法求解,并分别指出全响应中的自由响应/强迫响应、稳态响应/暂态响应。

6、动态系统的时域响应,可以理解为系统输出跟随输入指令,从一种状态到另一种状态的转换(例如数字电路中0、1电平的转换)。对于实际的物理系统来说,这种转换总是需要花费一定的时间的(转换不可能瞬时完成,需要一个过渡过程),而不能突变(思考:前面第3个讨论题所分析的0-到0+跃变,为什么在实际物理系统中不可能发生?)。针对预备训练一的RLC电路在方波输入激励下的响应(输出),从输出反应的速度、一个稳态到另一个稳态所用时间、输出过冲(超调)量大小等几个方面,比较分析电路工作于欠阻尼、过阻尼这两种状态,其过渡过程各自的特点。

1、系统的自由响应

系统自由响应为什么又被称为固有响应,这种时域响应的模态(随时间的变化规律)主要取决于什么?它与系统外加的输入激励有没有关系?(第1问)预备训练一的RLC电路,C1取两种不同值的情况下,所得到系统微分方程的特征根有什么不同(列出系统微分方程并求出其特征根)?这种不同对于系统的自由响应模态有何影响?(第2问)二阶电路(如RLC电路)的过阻尼、欠阻尼、临界阻尼、无阻尼分别对应于特征根的何种情形?(第3问)


(1)动态电路的完全响应中,已由初始条件确定待定系数k的微分方程通解部分,称为电路系统的自由响应。它的函数形式由电路系统本身结构决定,与外加激励无关,所以也称为固有响应。
(2)
在这里插入图片描述

在这里插入图片描述

(3)
在这里插入图片描述

2、各类响应的关系

试分析以下几个论断的正误:①零输入响应一定是自由响应;②自由响应一定是零输入响应;③零状态响应一定是强迫响应;④零状态响应包括自由响应和强迫响应。


(1)对
(2)错
(3)错
(4)对
(自由响应=固有响应)
在这里插入图片描述

3、冲激函数的特性

为什么“微分方程等号右端含有冲激函数及其各阶导数时,响应y(t)及其各阶导数由0-到0+的瞬间将发生跃变”(教材p45),这反映了冲激或者冲激偶所具有的何种特性?


0-是零输入时的初始状态,初始值是由系统的储能决定的;0+是加了输入后的初始状态,初始值受储能与激励的双重影响。
作用时间无穷小,反映了冲激或者冲激偶的瞬时特性。

4、初值求解问题

求解教材课后习题2.2(4),据此总结求0-到0+跃变的方法和步骤,特别注意与教材例2.1-3、2.1-4进行比较,说明如何确定等号右端冲激的阶次与等号左端y(t)的最高阶次的对应关系。


在这里插入图片描述

在这里插入图片描述
等号右端冲激函数的最高阶导数阶次与等号左端y(t)的最高导数阶次相等。
系统中从0-到0+有无跳变取决于微分方程右端是否包含冲激函数及其各阶导数,如果包含即发生了跳变,用冲激函数匹配法求出0+状态,冲激函数匹配法是根据t=0时刻微分方程左右两端的冲激函数及其各阶导数应该平衡等。
1、找最高阶,右端δ(t)最高阶对应左端最高阶。
2、由高到低列式子,直到出现阶跃信号u(t)。
3、把第二步列的式子带入到微分方程,系统进行匹配。
4、找出阶数对应的跳变值,r(k)(0+)=r(k)(0-)+跳变值。

5、零输入响应、零状态响应与全响应求解问题

求解教材课后习题2.4(2),其中零状态响应分别用常规方法(教材例2.1-5方法)和微分特性(教材例2.1-6方法)这两种方法求解,并分别指出全响应中的自由响应/强迫响应、稳态响应/暂态响应。


在这里插入图片描述
零状态响应用常规方法求解:
在这里插入图片描述
在这里插入图片描述
零状态响应部分用微分特性求解:

在这里插入图片描述

6、实际物理系统的响应过渡过程

动态系统的时域响应,可以理解为系统输出跟随输入指令,从一种状态到另一种状态的转换(例如数字电路中0、1电平的转换)。对于实际的物理系统来说,这种转换总是需要花费一定的时间的(转换不可能瞬时完成,需要一个过渡过程),而不能突变(思考:前面第3个讨论题所分析的0-到0+跃变,为什么在实际物理系统中不可能发生?(第一问))。针对预备训练一的RLC电路在方波输入激励下的响应(输出),从输出反应的速度、一个稳态到另一个稳态所用时间、输出过冲(超调)量大小等几个方面,比较分析电路工作于欠阻尼、过阻尼这两种状态,其过渡过程各自的特点。(第二问)
(1)从0-到0+是一种理想化的数学模型,现实中无法产生,因为需要满足冲激信号幅度无穷大,瞬时功率无穷大,变化速度无穷大。
(2)
一个系统受初扰动后不再受外界激励,因受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。

欠阻尼:如果负载阻抗大于传输线的特性阻抗,那么负载端多余的能量就会反射回源端,由于负载端没有吸收全部能量,故称这种情况为欠阻尼。
输出反应的速度快、一个稳态到另一个稳态所用时间长、输出过冲(超调)量大。

过阻尼:如果负载阻抗小于传输线的特性阻抗,那么负载试图消耗比当前源端提供的能量更多的能量,故反射回来通知源端输送更多的能量,故称这种情况为过阻尼。
输出反应的速度慢、一个稳态到另一个稳态所用时间短、输出过冲(超调)量小。

三、反思总结

暂无

这篇关于信号与线性系统翻转课堂笔记4——连续LTI系统的微分方程模型与求解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/508559

相关文章

ubuntu20.0.4系统中安装Anaconda的超详细图文教程

《ubuntu20.0.4系统中安装Anaconda的超详细图文教程》:本文主要介绍了在Ubuntu系统中如何下载和安装Anaconda,提供了两种方法,详细内容请阅读本文,希望能对你有所帮助... 本文介绍了在Ubuntu系统中如何下载和安装Anaconda。提供了两种方法,包括通过网页手动下载和使用wg

ubuntu系统使用官方操作命令升级Dify指南

《ubuntu系统使用官方操作命令升级Dify指南》Dify支持自动化执行、日志记录和结果管理,适用于数据处理、模型训练和部署等场景,今天我们就来看看ubuntu系统中使用官方操作命令升级Dify的方... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。

使用Python和SQLAlchemy实现高效的邮件发送系统

《使用Python和SQLAlchemy实现高效的邮件发送系统》在现代Web应用中,邮件通知是不可或缺的功能之一,无论是订单确认、文件处理结果通知,还是系统告警,邮件都是最常用的通信方式之一,本文将详... 目录引言1. 需求分析2. 数据库设计2.1 User 表(存储用户信息)2.2 CustomerO

Linux系统调试之ltrace工具使用与调试过程

《Linux系统调试之ltrace工具使用与调试过程》:本文主要介绍Linux系统调试之ltrace工具使用与调试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、ltrace 定义与作用二、ltrace 工作原理1. 劫持进程的 PLT/GOT 表2. 重定

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Windows系统宽带限制如何解除?

《Windows系统宽带限制如何解除?》有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文就跟大家一起来看看Windows系统解除网络限制的操作方法吧... 有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

电脑找不到mfc90u.dll文件怎么办? 系统报错mfc90u.dll丢失修复的5种方案

《电脑找不到mfc90u.dll文件怎么办?系统报错mfc90u.dll丢失修复的5种方案》在我们日常使用电脑的过程中,可能会遇到一些软件或系统错误,其中之一就是mfc90u.dll丢失,那么,mf... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案

《电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案》最近有不少兄弟反映,电脑突然弹出“mfc100u.dll已加载,但找不到入口点”的错误提示,导致一些程序无法正... 在计算机使用过程中,我们经常会遇到一些错误提示,其中最常见的就是“找不到指定的模块”或“缺少某个DL

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析