MNIST简单数据处理:哪个数字最费墨水?——Pandas入门

2023-12-18 02:30

本文主要是介绍MNIST简单数据处理:哪个数字最费墨水?——Pandas入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

手写数据集MNIST的简单数据处理

数据集

来源–LIBSVM

LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包。

数据格式

该软件使用的训练数据和检验数据文件格式:

<label> <index1>:<value1> <index2>:<value2> …

<label> 为数据集标签,对于分类,它是标识某类的整数(支持多个类),本例中就是数字0~9
<index> 是以1开始的整数,可以是不连续的,本例中就是28×28的灰度图像中,所代表的的像素点的编号,最大编号为784;
<value> 是实数,也就是自变量,在本例中为灰度值,取值(0, 1],若为0,则不会出现在数据集中。

原始数据集下载网址:https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
下载mnist8m -> mnist8m.bz2 (大小约为19G)
在这里插入图片描述在这里插入图片描述在这里插入图片描述

处理过程

因为本例不涉及像素编号,所以提前预处理了像素编号和“:”,删掉了之后的数据集看起来是下面的样子。

在这里插入图片描述
过程很简单:
对于每一个数字,将该数字的灰度值求和,也就是整行求和。这个灰度值的和,就是我们认为该数字“耗费的墨水”。之后再对所有相同数字取平均值,并排序,得到每个数字耗费墨水的程度。

代码:

#!coding:utf-8
import sys
import time
import pandas as pd
import numpy as np# 计时
start = time.time()
df = pd.read_csv('sample1.csv', header=None, dtype=float)# 填充NAN值,因为每个数字对应的每行长度是不一样的
# 也就是占用的像素数不同,因此会出现很多Nan值,我们视为0
df = df.fillna(0)
# print(type(df[1][3]))
# dflist1 = [[]for i in range(2)]# 只提取了数据集的前300行来计算, width是行的长度
numbers = 300
width = 252# 每行灰度值求和
for j in range(numbers):grey_sum = 0for i in range(1, width):grey_sum = grey_sum + df[i][j]list1[0].append(df[0][j])list1[1].append(grey_sum)# 将list1转置为df2
df2 = pd.DataFrame(list1).transpose()# 将所有数字0~9的求和后的灰度值取平均
average = []
for i in range(0, 10):df_k = df2[df2[0] == i]num_count = df_k.shape[0]average.append(np.sum(df2[df2[0] == i])/num_count)# 排序
final_results = sorted(average, key = (lambda average: [average[1], average[0]]))# 转DataFrame,设置列标题
sort = pd.DataFrame(final_results)
sort.columns = ['Number', 'Grayscale Value']
print(sort)end = time.time()
print('Time used:', end-start)

输出:
在这里插入图片描述
最费墨水的竟然是0……

整篇代码很多冗余操作,只是为了多涉及几个Pandas的基础用法,仅供参考使用方法,编程思路不建议学习,其实很多操作可以几行搞定。

预处理过后的数据样本“sample1.csv”很小,就几百K,只包含数据集中前300个数字。

https://pan.baidu.com/s/1S-uqxWLiGzyerUlfzzWDNg
提取码:og2b

更新:
网盘麻烦,我直接上传到主页资源了


有空整理一篇用Spark.sql的,因为其实原本就是Spark.sql做的。。

这篇关于MNIST简单数据处理:哪个数字最费墨水?——Pandas入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/506720

相关文章

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Pandas利用主表更新子表指定列小技巧

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同... 目录一、前言二、基本案例1. 创建主表数据2. 创建映射字典3. 创建子表数据4. 更新子表的 zb

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa