【MATLAB第82期】基于MATLAB的季节性差分自回归滑动平均模型SARIMA时间序列预测模型含预测未来

本文主要是介绍【MATLAB第82期】基于MATLAB的季节性差分自回归滑动平均模型SARIMA时间序列预测模型含预测未来,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MATLAB第82期】基于MATLAB的季节性差分自回归滑动平均模型SARIMA时间序列预测模型含预测未来

一、模型介绍

1、模型简介

季节性差分自回归移动平均模型(Seasonal Autoregressive Integrated Moving Average Model, SARIMA),又称为周期性差分自回归移动平均模型,是时间序列预测常用的分析方法之一,常应用于包含趋势和季节性的单变量数据的预测。SARIMA对于时间序列数据的季节性变动等周期性属性具有较高的敏感性。

2、模型参数

SARIMA结构参数有七个:(p,d,q) (P,D,Q,s)

1、季节性与非季节性差分数
d:代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项。使用SARIMA模型要求数据平稳。SARIMA的差分项有两个,分别是季节性差分D与非季节性差分d。通常季节性差分经过一次即可,非季节性差分通常在0~3之间。确定非季节性差分数d从0至3循环,平稳后停止,当检验模型参数时d=1时数据已经平稳。

D: 周期性差分阶数。季节性差分通常在0~3之间。确定季节性差分数D从0至3循环,平稳后停止,当检验模型参数时D=1时数据已经平稳。

2、确定SARIMA模型阶数
这个步骤中需要确定的阶数有四个:AR阶数p,MA阶数q,SAR阶数P,SMA阶数Q。用基于AICBIC准则的方法定阶。
p:代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项。p通常在1~3之间,通过循环可得p=2时,AICBIC值最小。
q:代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项。q通常在1~3之间,通过循环可得q=1时,AICBIC值最小。
P: 周期性自回归阶数。P通常在1~2之间,通过循环可得P=2时,AICBIC值最小。
Q: 周期性移动平均阶数。Q通常在1~2之间,通过循环可得Q=1时,AICBIC值最小。

3、确定周期时间间隔
s: 周期时间间隔。 过对现有数据集的观察,案例数据在3年尺度上存在一定的周期性,可以认为既定的年份的数据与其前一年的数据(也即前36个月的数据)之间存在较强的相关性,故选取36为周期时间间隔。

4、残差检测
为了确保确定的阶数合适,还需要进行残差检验。残差即原始信号减掉模型拟合出的信号后的残余信号。如果残差是随机正态分布的、不自相关的,这说明残差是一段白噪声信号,也就说明有用的信号已经都被提取到模型中了
在这里插入图片描述
上图为残差检验的结果图。Standardized Residuals是查看残差是否接近正态分布,理想的残差要接近正态分布;ACF和PACF检验残差的自相关和偏自相关,理想的结果应该在图中不存在超出蓝线的点;最后一张QQ图是检验残差是否接近正太分布的,理想的结果中蓝点应该靠近红线。
除了上述图像检验方法,还可以通过Durbin-Watson对相关性进行检验:
Durbin-Watson 统计是计量经济学分析中最常用的自相关度量,该值接近2,则可以认为序列不存在一阶相关性。
运算结果为1.96,这个值越接近2越说明残差不存在一阶相关性。
上述检验可以证明,残差接近正态分布,且相互独立,可以认为SARIMA建模符合要求。

二、预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
表5 SARIMA训练集和测试集预测结果评价指标
样本 RMSE MSE MAE R2
训练集 2.101 4.4143 0.88828 0.93821
测试集 1.6282 2.6511 1.1039 0.97196

从评价指标数值表的角度看,SARIMA在销量预测上有较高的精度,测试所得的误差值较小,能深入挖掘长时间序列数据的深层规律。从对比LSTM图像的角度看,SARIMA对周期性波动性的挖掘较为深入,但对整体态势的预测上表现较LSTM差,对个别点的预测不够精确,缺乏对离散数值的关注。

三、部分代码展示

close all
clear all
%% 1.加载数据
xall= importdata('经营数据2.xlsx');%导入数据
time=xall.textdata;%时间数据
xnum = datenum(time(2:end,1)); % 将日期转为数值
data= xall.data(:,2);% 时间序列数据 data1=data;
addpath('funs');
S = 36; %季节性序列变化周期
step = 12;
% 通常P和Q不大于3
%% 2.确定季节性与非季节性差分数,D取默认值1,d从03循环,平稳后停止
for d = 0:3dY = filter(D,data)%对原数据进行差分运算  if(getStatAdfKpss(dY)) %数据平稳disp(['非季节性差分数为',num2str(d),',季节性差分数为1']);break;end
end
%% 3.确定阶数ARlags,MALags,SARLags,SMALags
max_ar = 3;    %ARlags上限
max_ma = 3;    %MALags上限
max_sar = 2;   %SARLags上限
max_sma = 2;   %SMALags上限

四、代码获取

私信后台回复“82期”以及根据要求回复指令即可获取下载链接。

这篇关于【MATLAB第82期】基于MATLAB的季节性差分自回归滑动平均模型SARIMA时间序列预测模型含预测未来的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/503514

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间