【STM32F407的DSP教程】第50章 STM32F407的样条插补实现,波形拟合丝滑顺畅

2023-12-17 00:32

本文主要是介绍【STM32F407的DSP教程】第50章 STM32F407的样条插补实现,波形拟合丝滑顺畅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547

第50章       STM32F407的样条插补实现,波形拟合丝滑顺畅

本章节讲解样条插补,主要用于波形拟合,平滑过渡。

目录

50.1 初学者重要提示

50.2 样条插补介绍

50.3 样条插补实现

50.3.1 函数arm_spline_init_f32

50.3.2  函数arm_spline_f32

50.3.3  使用样条插补函数的关键点

50.3.4 自然样条插补测试

50.3.5 抛物线样条插补测试

50.4 实验例程说明(MDK)

50.5 实验例程说明(IAR)

50.6 总结


50.1 初学者重要提示

1、  DSP库支持了样条插补,双线性插补和线性插补,我们这里主要介绍样条插补的实现。

50.2 样条插补介绍

在数学学科数值分析中,样条是一种特殊的函数,由多项式分段定义。样条的英语单词spline来源于可变形的样条工具,那是一种在造船和工程制图时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。在计算机科学的计算机辅助设计和计算机图形学中,样条通常是指分段定义的多项式参数曲线。由于样条构造简单,使用方便,拟合准确,并能近似曲线拟合和交互式曲线设计中复杂的形状,样条是这些领域中曲线的常用表示方法

50.3 样条插补实现

样条插补主要通过下面两个函数实现。

50.3.1        函数arm_spline_init_f32

函数原型:

void arm_spline_init_f32(arm_spline_instance_f32 * S,arm_spline_type type,const float32_t * x,const float32_t * y,uint32_t n, float32_t * coeffs,float32_t * tempBuffer)

函数描述:

此函数用于样条函数初始化。

函数参数:

  •   第1个参数是arm_spline_instance_f32类型结构体变量。
  •   第2个参数是样条类型选择:
    •   ARM_SPLINE_NATURAL 表自然样条。
    •   ARM_SPLINE_PARABOLIC_RUNOUT 表示抛物线样条。
  •   第3个参数是原始数据x轴坐标值。
  •   第4个参数是原始数据y轴坐标值。
  •   第5个参数是原始数据个数。
  •   第6个参数是插补因数缓存。
  •   第7个参数是临时缓冲。

注意事项:

  •   x轴坐标数据必须是递增方式。
  •   第6个参数插补因数缓存大小问题,如果原始数据个数是n,那么插补因数个数必须要大于等于3*(n-1)。
  •   第7个参数临时缓冲大小问题,如果原始数据个数是n,那么临时缓冲大小必须大于等于2*n - 1

50.3.2        函数arm_spline_f32

函数原型:

void arm_spline_f32(arm_spline_instance_f32 * S, const float32_t * xq,float32_t * pDst,uint32_t blockSize)

函数描述:

此函数用于样条插补实现。

函数参数:

  •   第1个参数是arm_spline_instance_f32类型结构体变量。
  •   第2个参数是插补后的x轴坐标值,需要用户指定,注意坐标值一定是递增的。
  •   第3个参数是经过插补计算后输出的y轴数值
  •   第4个参数是数据输出个数

50.3.3 使用样条插补函数的关键点

样条插补的主要作用是使得波形更加平滑。比如一帧是128点,步大小是8个像素,我们可以通过插补实现步长为1, 1024点的波形,本质是你的总步长大小不能变,我们这里都是1024,这个不能变,在这个基础上做插补,效果就出来了。

这个认识非常重要,否则无法正常使用插补算法。

50.3.4 自然样条插补测试

样条测试代码的实现如下:

#define INPUT_TEST_LENGTH_SAMPLES 	128  /* 输入数据个数 */
#define OUT_TEST_LENGTH_SAMPLES   	1024   /* 输出数据个数 */#define SpineTab OUT_TEST_LENGTH_SAMPLES/INPUT_TEST_LENGTH_SAMPLES  /* 插补末尾的8个坐标值不使用 */float32_t xn[INPUT_TEST_LENGTH_SAMPLES];   /* 输入数据x轴坐标 */
float32_t yn[INPUT_TEST_LENGTH_SAMPLES];   /* 输入数据y轴坐标 */float32_t coeffs[3*(INPUT_TEST_LENGTH_SAMPLES - 1)];     /* 插补系数缓冲 */  
float32_t tempBuffer[2 * INPUT_TEST_LENGTH_SAMPLES - 1]; /* 插补临时缓冲 */  float32_t xnpos[OUT_TEST_LENGTH_SAMPLES];  /* 插补计算后X轴坐标值 */
float32_t ynpos[OUT_TEST_LENGTH_SAMPLES];  /* 插补计算后Y轴数值 *//*
*********************************************************************************************************
*	函 数 名: main
*	功能说明: c程序入口
*	形    参: 无
*	返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{uint32_t i;uint32_t idx2;uint8_t ucKeyCode;	arm_spline_instance_f32 S;bsp_Init();		/* 硬件初始化 */PrintfLogo();	/* 打印例程名称和版本等信息 */PrintfHelp();	/* 打印操作提示 */bsp_StartAutoTimer(0, 100);	/* 启动1个100ms的自动重装的定时器 *//* 原始x轴数值和y轴数值 */for(i=0; i<INPUT_TEST_LENGTH_SAMPLES; i++){xn[i] = i*SpineTab;yn[i] = 1 + cos(2*3.1415926*50*i/256 + 3.1415926/3);}/* 插补后X轴坐标值,这个是需要用户设置的 */for(i=0; i<OUT_TEST_LENGTH_SAMPLES; i++){xnpos[i] = i;}while (1){bsp_Idle();		/* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0))	{/* 每隔100ms 进来一次 */  bsp_LedToggle(2);}ucKeyCode = bsp_GetKey();	/* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K1:  /* K1键按下,自然样条插补 *//* 样条初始化 */arm_spline_init_f32(&S,ARM_SPLINE_NATURAL ,xn,yn,INPUT_TEST_LENGTH_SAMPLES,coeffs,tempBuffer);/* 样条计算 */arm_spline_f32	(&S,xnpos,ynpos,OUT_TEST_LENGTH_SAMPLES);/* 打印输出输出 */idx2 = 0;for (i = 0; i < OUT_TEST_LENGTH_SAMPLES-SpineTab; i++){	if ((i % SpineTab) == 0){printf("%f,%f\r\n", ynpos[i], yn[idx2++]);}else{printf("%f,\r\n", ynpos[i]);}}break;default:/* 其它的键值不处理 */break;}}}
}

代码里面的几个关键地方:

  •   原始坐标数组xn和yn是128组,而我们通过插补生成的是1024组xnpos和ynpos,其中1024组的xnpos需要用户设置初值,这点不能忽略。
  •   函数arm_spline_init_f32用于样条函数初始化,这里特别注意,此函数主要是对原始数据的操作。自然样条插补用的ARM_SPLINE_NATURAL。
  •   函数arm_spline_f32用于样条函数计算。

实际输出效果如下:

 

50.3.5 抛物线样条插补测试

样条测试代码的实现如下:

#define INPUT_TEST_LENGTH_SAMPLES 	128  /* 输入数据个数 */
#define OUT_TEST_LENGTH_SAMPLES   	1024   /* 输出数据个数 */#define SpineTab OUT_TEST_LENGTH_SAMPLES/INPUT_TEST_LENGTH_SAMPLES  /* 插补末尾的8个坐标值不使用 */float32_t xn[INPUT_TEST_LENGTH_SAMPLES];   /* 输入数据x轴坐标 */
float32_t yn[INPUT_TEST_LENGTH_SAMPLES];   /* 输入数据y轴坐标 */float32_t coeffs[3*(INPUT_TEST_LENGTH_SAMPLES - 1)];     /* 插补系数缓冲 */  
float32_t tempBuffer[2 * INPUT_TEST_LENGTH_SAMPLES - 1]; /* 插补临时缓冲 */  float32_t xnpos[OUT_TEST_LENGTH_SAMPLES];  /* 插补计算后X轴坐标值 */
float32_t ynpos[OUT_TEST_LENGTH_SAMPLES];  /* 插补计算后Y轴数值 *//*
*********************************************************************************************************
*	函 数 名: main
*	功能说明: c程序入口
*	形    参: 无
*	返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{uint32_t i;uint32_t idx2;uint8_t ucKeyCode;	arm_spline_instance_f32 S;bsp_Init();		/* 硬件初始化 */PrintfLogo();	/* 打印例程名称和版本等信息 */PrintfHelp();	/* 打印操作提示 */bsp_StartAutoTimer(0, 100);	/* 启动1个100ms的自动重装的定时器 *//* 原始x轴数值和y轴数值 */for(i=0; i<INPUT_TEST_LENGTH_SAMPLES; i++){xn[i] = i*SpineTab;yn[i] = 1 + cos(2*3.1415926*50*i/256 + 3.1415926/3);}/* 插补后X轴坐标值,这个是需要用户设置的 */for(i=0; i<OUT_TEST_LENGTH_SAMPLES; i++){xnpos[i] = i;}while (1){bsp_Idle();		/* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0))	{/* 每隔100ms 进来一次 */  bsp_LedToggle(2);}ucKeyCode = bsp_GetKey();	/* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K2:			/* K2键按下,抛物线样条插补 *//* 样条初始化 */arm_spline_init_f32(&S,ARM_SPLINE_PARABOLIC_RUNOUT , xn,yn,INPUT_TEST_LENGTH_SAMPLES,coeffs,tempBuffer);/* 样条计算 */arm_spline_f32	(&S,xnpos,ynpos,OUT_TEST_LENGTH_SAMPLES);/* 打印输出输出 */idx2 = 0;for (i = 0; i < OUT_TEST_LENGTH_SAMPLES-SpineTab; i++){	if ((i % SpineTab) == 0){printf("%f,%f\r\n", ynpos[i], yn[idx2++]);}else{printf("%f,\r\n", ynpos[i]);}}break;default:/* 其它的键值不处理 */break;}}}
}

代码里面的几个关键地方:

  •   原始坐标数组xn和yn是128组,而我们通过插补生成的是1024组xnpos和ynpos,其中1024组的xnpos需要用户设置初值,这点不能忽略。
  •   函数arm_spline_init_f32用于样条函数初始化,这里特别注意,此函数主要是对原始数据的操作。抛物线样条插补用的ARM_SPLINE_PARABOLIC_RUNOUT。
  •   函数arm_spline_f32用于样条函数计算。

实际输出效果如下:

 

50.4 实验例程说明(MDK)

配套例子:

V5-235_样条插补,波形拟合丝滑顺畅

实验目的:

  1. 学习样条插补的实现。

实验内容:

  1. 启动一个自动重装软件定时器,每100ms翻转一次LED2。
  2. K1键按下,自然样条插补测试。
  3. K2键按下,抛物线样插补测试。

使用AC6注意事项

特别注意附件章节C的问题

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1。

 

RTT方式打印信息:

 

程序设计:

  系统栈大小分配:

 

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*	函 数 名: bsp_Init
*	功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*	形    参:无
*	返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{/* STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。- 设置NVIC优先级分组为4。*/HAL_Init();/* 配置系统时钟到168MHz- 切换使用HSE。- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。*/SystemClock_Config();/* Event Recorder:- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。- 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章*/	
#if Enable_EventRecorder == 1  /* 初始化EventRecorder并开启 */EventRecorderInitialize(EventRecordAll, 1U);EventRecorderStart();
#endifbsp_InitKey();    	/* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */bsp_InitTimer();  	/* 初始化滴答定时器 */bsp_InitUart();	/* 初始化串口 */bsp_InitLed();    	/* 初始化LED */		
}

主功能:

主程序实现如下操作:

  •   启动一个自动重装软件定时器,每100ms翻转一次LED2。
  •   K1键按下,自然样条插补测试。
  •   K2键按下,抛物线样插补测试。
/*
*********************************************************************************************************
*	函 数 名: main
*	功能说明: c程序入口
*	形    参: 无
*	返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{uint32_t i;uint32_t idx2;uint8_t ucKeyCode;	arm_spline_instance_f32 S;bsp_Init();		/* 硬件初始化 */PrintfLogo();	/* 打印例程名称和版本等信息 */PrintfHelp();	/* 打印操作提示 */bsp_StartAutoTimer(0, 100);	/* 启动1个100ms的自动重装的定时器 *//* 原始x轴数值和y轴数值 */for(i=0; i<INPUT_TEST_LENGTH_SAMPLES; i++){xn[i] = i*SpineTab;yn[i] = 1 + cos(2*3.1415926*50*i/256 + 3.1415926/3);}/* 插补后X轴坐标值,这个是需要用户设置的 */for(i=0; i<OUT_TEST_LENGTH_SAMPLES; i++){xnpos[i] = i;}while (1){bsp_Idle();		/* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0))	{/* 每隔100ms 进来一次 */  bsp_LedToggle(2);}ucKeyCode = bsp_GetKey();	/* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K1:  /* K1键按下,自然样条插补 *//* 样条初始化 */arm_spline_init_f32(&S,ARM_SPLINE_NATURAL ,xn,yn,INPUT_TEST_LENGTH_SAMPLES,coeffs,tempBuffer);/* 样条计算 */arm_spline_f32	(&S,xnpos,ynpos,OUT_TEST_LENGTH_SAMPLES);/* 打印输出输出 */idx2 = 0;for (i = 0; i < OUT_TEST_LENGTH_SAMPLES-SpineTab; i++){	if ((i % SpineTab) == 0){printf("%f,%f\r\n", ynpos[i], yn[idx2++]);}else{printf("%f,\r\n", ynpos[i]);}}break;case KEY_DOWN_K2:			/* K2键按下,抛物线样条插补 *//* 样条初始化 */arm_spline_init_f32(&S,ARM_SPLINE_PARABOLIC_RUNOUT , xn,yn,INPUT_TEST_LENGTH_SAMPLES,coeffs,tempBuffer);/* 样条计算 */arm_spline_f32	(&S,xnpos,ynpos,OUT_TEST_LENGTH_SAMPLES);/* 打印输出输出 */idx2 = 0;for (i = 0; i < OUT_TEST_LENGTH_SAMPLES-SpineTab; i++){	if ((i % SpineTab) == 0){printf("%f,%f\r\n", ynpos[i], yn[idx2++]);}else{printf("%f,\r\n", ynpos[i]);}}break;default:/* 其它的键值不处理 */break;}}}
}

50.5 实验例程说明(IAR)

配套例子:

V5-235_样条插补,波形拟合丝滑顺畅

实验目的:

  1. 学习样条插补的实现。

实验内容:

  1. 启动一个自动重装软件定时器,每100ms翻转一次LED2。
  2. K1键按下,自然样条插补测试。
  3. K2键按下,抛物线样插补测试。

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1。

 

RTT方式打印信息:

 

程序设计:

  系统栈大小分配:

 

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*	函 数 名: bsp_Init
*	功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*	形    参:无
*	返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{/* STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。- 设置NVIC优先级分组为4。*/HAL_Init();/* 配置系统时钟到168MHz- 切换使用HSE。- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。*/SystemClock_Config();/* Event Recorder:- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。- 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章*/	
#if Enable_EventRecorder == 1  /* 初始化EventRecorder并开启 */EventRecorderInitialize(EventRecordAll, 1U);EventRecorderStart();
#endifbsp_InitKey();    	/* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */bsp_InitTimer();  	/* 初始化滴答定时器 */bsp_InitUart();	/* 初始化串口 */bsp_InitLed();    	/* 初始化LED */		
}

  主功能:

主程序实现如下操作:

  •   启动一个自动重装软件定时器,每100ms翻转一次LED2。
  •   K1键按下,自然样条插补测试。
  •   K2键按下,抛物线样插补测试。
/*
*********************************************************************************************************
*	函 数 名: main
*	功能说明: c程序入口
*	形    参: 无
*	返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{uint32_t i;uint32_t idx2;uint8_t ucKeyCode;	arm_spline_instance_f32 S;bsp_Init();		/* 硬件初始化 */PrintfLogo();	/* 打印例程名称和版本等信息 */PrintfHelp();	/* 打印操作提示 */bsp_StartAutoTimer(0, 100);	/* 启动1个100ms的自动重装的定时器 *//* 原始x轴数值和y轴数值 */for(i=0; i<INPUT_TEST_LENGTH_SAMPLES; i++){xn[i] = i*SpineTab;yn[i] = 1 + cos(2*3.1415926*50*i/256 + 3.1415926/3);}/* 插补后X轴坐标值,这个是需要用户设置的 */for(i=0; i<OUT_TEST_LENGTH_SAMPLES; i++){xnpos[i] = i;}while (1){bsp_Idle();		/* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0))	{/* 每隔100ms 进来一次 */  bsp_LedToggle(2);}ucKeyCode = bsp_GetKey();	/* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K1:  /* K1键按下,自然样条插补 *//* 样条初始化 */arm_spline_init_f32(&S,ARM_SPLINE_NATURAL ,xn,yn,INPUT_TEST_LENGTH_SAMPLES,coeffs,tempBuffer);/* 样条计算 */arm_spline_f32	(&S,xnpos,ynpos,OUT_TEST_LENGTH_SAMPLES);/* 打印输出输出 */idx2 = 0;for (i = 0; i < OUT_TEST_LENGTH_SAMPLES-SpineTab; i++){	if ((i % SpineTab) == 0){printf("%f,%f\r\n", ynpos[i], yn[idx2++]);}else{printf("%f,\r\n", ynpos[i]);}}break;case KEY_DOWN_K2:			/* K2键按下,抛物线样条插补 *//* 样条初始化 */arm_spline_init_f32(&S,ARM_SPLINE_PARABOLIC_RUNOUT , xn,yn,INPUT_TEST_LENGTH_SAMPLES,coeffs,tempBuffer);/* 样条计算 */arm_spline_f32	(&S,xnpos,ynpos,OUT_TEST_LENGTH_SAMPLES);/* 打印输出输出 */idx2 = 0;for (i = 0; i < OUT_TEST_LENGTH_SAMPLES-SpineTab; i++){	if ((i % SpineTab) == 0){printf("%f,%f\r\n", ynpos[i], yn[idx2++]);}else{printf("%f,\r\n", ynpos[i]);}}break;default:/* 其它的键值不处理 */break;}}}
}

50.6 总结

本章节主要讲解了样条插补的实现,实际项目比较实用,有兴趣可以深入源码了解。

这篇关于【STM32F407的DSP教程】第50章 STM32F407的样条插补实现,波形拟合丝滑顺畅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/502473

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal