从零开始学C++之重载 operator new 和 operator delete 实现一个简单内存泄漏跟踪器

本文主要是介绍从零开始学C++之重载 operator new 和 operator delete 实现一个简单内存泄漏跟踪器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先来说下实现思路:可以实现一个Trace类,调用 operator new 的时候就将指向分配内存的指针、当前文件、当前行等信息添加进Trace 成员map容器内,在调用operator delete 的时候删除这些信息。定义一个全局Trace 对象,当程序结束,对象析构时判断成员map 是否还有信息,如果有则打印出来,表示已经发生内存泄漏,从输出可以看出是哪一个文件哪一行分配了内存但没有释放掉。


DebugNew.h:

C++ Code 
1
2
3
4
5
6
7
8
9
#ifndef _DEBUG_NEW_H_
#define _DEBUG_NEW_H_

#ifndef NDEBUG
#include  "Tracer.h"
#define  new  new(__FILE__, __LINE__)
#endif  // NDEBUG

#endif  // _DEBUG_NEW_H_

Trace.h:

C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#ifndef _TRACER_H_
#define _TRACER_H_

#include <map>

#ifndef NDEBUG

void * operator  new(size_t size,  const  char *file,  long line);
void  operator  delete( void *p);

void * operator  new[](size_t size,  const  char *file,  long line);
void  operator  delete[]( void *p);

class Tracer
{
private:
     class Entry
    {
     public:
        Entry( const  char *file =  0long line =  0)
            : file_(file), line_(line) {}
         const  char *File()  const
        {
             return file_;
        }
         long Line()  const
        {
             return line_;
        }
     private:
         const  char *file_;
         long line_;
    };
public:
    Tracer();
    ~Tracer();
     static  bool Ready;

     void Add( void *p,  const  char *file,  long line);
     void Remove( void *p);
     void Dump();

private:
    std::map< void *, Entry> mapEntry_;
};

#endif  // NDEBUG

#endif  // _TRACER_H_

Trace.cpp:


C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include <iostream>
#include  "Tracer.h"

#ifndef NDEBUG

bool Tracer::Ready =  false;

Tracer::Tracer()
{
    Ready =  true;
}

Tracer::~Tracer()
{
    Ready =  false;
    Dump();
}

void Tracer::Add( void *p,  const  char *file,  long line)
{
    mapEntry_[p] = Entry(file, line);
}

void Tracer::Remove( void *p)
{
    std::map< void *, Entry>::iterator it;
    it = mapEntry_.find(p);
     if (it != mapEntry_.end())
    {
        mapEntry_.erase(it);
    }
}

void Tracer::Dump()
{
     if (mapEntry_.size() >  0)
    {
        std::cout <<  "*** Memory leak(s):" << std::endl;
        std::map< void *, Entry>::iterator it;

         for (it = mapEntry_.begin(); it != mapEntry_.end(); ++it)
        {
             const  char *file = it->second.File();
             long line = it->second.Line();
             int addr =  reinterpret_cast< int>(it->first);
            std::cout <<  "0x" << std::hex << addr <<  ": "
                      << file <<  ", line " << std::dec << line << std::endl;

        }
        std::cout << std::endl;
    }
}

Tracer NewTrace;

void * operator  new(size_t size,  const  char *file,  long line)
{
     void *p = malloc(size);
     if (Tracer::Ready)
    {
        NewTrace.Add(p, file, line);
    }
     return p;
}


void  operator  delete( void *p)
{
     if (Tracer::Ready)
    {
        NewTrace.Remove(p);
    }
    free(p);
}

void * operator  new[](size_t size,  const  char *file,  long line)
{
     void *p = malloc(size);
     if (Tracer::Ready)
    {
        NewTrace.Add(p, file, line);
    }
     return p;
}

void  operator  delete[]( void *p)
{
     if (Tracer::Ready)
    {
        NewTrace.Remove(p);
    }
    free(p);
}
#endif  // #ifndef NDEBUG

main.cpp:

C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
using  namespace std;

#include  "DebugNew.h"

int main( void)
{
     int *p =  new  int;
     /*delete p;*/

     int *p2 =  new  int[ 5];
     /*delete[] p2;*/

     return  0;
}



程序 #define new new(__FILE__, __LINE__); 是为了利用__FILE__, 和 __LINE__两个宏,分别代表文件名和行数。分别重载了


operator new 和 operator new[]  函数以及对应的delete,更详细的讨论可以参见这里。当全局对象NewTrace 析构时调用Dump成员


函数,如果new 和 delete 没有匹配,那么map将存在泄漏信息,并打印出来。


此外只在Debug版本(没有定义NDEBUG)才跟踪内存泄漏,所以加上#ifndef NDEBUG ... #endif 


而由于一般的C++库中可能没有#define new new(__FILE__, __LINE__);  即调用的还是原始的new,但现在程序中并没有重载这种类


型的new和delete函数,故并不能跟踪类似map容器之类的内存泄漏,但一般正常使用C++库容器的话,是不会造成内存泄漏的,


C++库已经实现得比较完善了,至少比我们自己写的程序要好很多。


参考:

C++ primer 第四版
Effective C++ 3rd
C++编程规范


这篇关于从零开始学C++之重载 operator new 和 operator delete 实现一个简单内存泄漏跟踪器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501674

相关文章

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连