Guardrails for Amazon Bedrock 基于具体使用案例与负责任 AI 政策实现定制式安全保障(预览版)

本文主要是介绍Guardrails for Amazon Bedrock 基于具体使用案例与负责任 AI 政策实现定制式安全保障(预览版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作为负责任的人工智能(AI)战略的一部分,您现在可以使用 Guardrails for Amazon Bedrock(预览版),实施专为您的用例和负责任的人工智能政策而定制的保障措施,以此促进用户与生成式人工智能应用程序之间的安全交互。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点 这里让它成为你的技术宝库!

亚马逊云科技致力于以负责任、以人为本的方式开发生成式人工智能,并注重教育和科学,帮助开发人员在整个人工智能生命周期中整合负责任的人工智能。借助 Guardrails for Amazon Bedrock,您可以持续实施保障措施,在符合公司政策和原则的情况下,为用户提供相关且安全的体验。Guardrails 可帮助您定义拒绝主题和内容过滤器,以便从用户与应用程序之间的交互过程中删除不良和有害内容。除基础模型(FM)中内置的各种保护措施外,这又提供了额外控制。

您可以为 Amazon Bedrock 中的所有大型语言模型(LLM)装上护栏,包括自定义模型和 Agents for Amazon Bedrock。这可以提高在应用程序间部署首选项的一致性,进而令您安全地开展创新,同时根据您的要求密切管理用户体验。通过对安全和隐私控制加以标准化处理,Guardrails for Amazon Bedrock 可有助于您构建符合负责任人工智能目标的生成式人工智能应用程序。

图片

以下,将简要介绍 Guardrails for Amazon Bedrock 所提供的关键控制。

关键控制

使用 Guardrails for Amazon Bedrock,您可以定义以下政策集,为您的应用程序保驾护航。

拒绝主题 - 您可以使用简短的自然语言描述,定义一组在应用程序语境中不受欢迎的主题。例如,作为银行的开发人员,您可能希望为网上银行应用程序设置一个助手,避免提供投资建议。

我指定了一个名为“投资建议”的拒绝主题,并提供了一段自然语言描述,例如“投资建议是指以产生回报或实现特定财务目标为目的的有关资金或资产管理或分配的询问、指导或建议”。

图片

图片

内容过滤器 - 您可以配置用于过滤仇恨、侮辱、性和暴力等各类有害内容的阈值。虽然许多基础模型已经内置了保护措施,以防止产生不良和有害反应,但 Guardrails 为您提供了额外的控制功能,可根据您的用例和负责任的人工智能政策,将此类互动过滤至预期程度。过滤器强度越高,过滤就越严格。

图片

PII 编辑(计划中)- 您将可以选择一组可在基础模型生成的响应中进行编辑的个人身份信息(PII),例如姓名、电子邮件地址和电话号码,或者在用户输入含有 PII 的内容时加以阻止。

Guardrails for Amazon Bedrock 与 Amazon CloudWatch 相集成,因此您可以监控和分析违反 Guardrails 中所定义政策的用户输入和基础模型响应。

加入预览

今日推出的 Guardrails for Amazon Bedrock 是有限预览版。如果您想要获取 Guardrails for Amazon Bedrock,请通过您平常的亚马逊云科技支持团队联系人联系我们。

在预览期间,Guardrails 可应用于 Amazon Bedrock 中的所有大型语言模型(LLM),包括 Amazon Titan Text、Anthropic Claude、Meta Llama 2、AI21 Jurassic、以及 Cohere Command。您也可以将 Guardrails 用于自定义模型以及 Agents for Amazon Bedrock。

要了解更多信息,请访问 Guardrails for Amazon Bedrock 网页。

文章来源:
https://dev.amazoncloud.cn/column/article/65717fbde1a2aa6fd35233c9?sc_medium=regulartraffic&sc_campaign=crossplatform&sc_channel=CSDN

这篇关于Guardrails for Amazon Bedrock 基于具体使用案例与负责任 AI 政策实现定制式安全保障(预览版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500925

相关文章

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1