成都工业学院2021级操作系统专周课程设计FCFS,SSTF,SCAN,LOOK算法的实现

本文主要是介绍成都工业学院2021级操作系统专周课程设计FCFS,SSTF,SCAN,LOOK算法的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

运行环境

操作系统:Windows 11 家庭版

运行软件:CLion 2023.2.2

源代码文件

#include <iostream>
#include <vector>
#include <algorithm>
#include <random>
using namespace std;// 生成随机数
int generateRandomNumber(int min, int max) {random_device rd;mt19937 gen(rd());uniform_int_distribution<> dis(min, max);return dis(gen);
}// 计算引臂移动量
int calculateArmMovement(const vector<int>& movementSequence) {int movement = 0;for (int i = 1; i < movementSequence.size(); ++i) {movement += abs(movementSequence[i] - movementSequence[i-1]);}return movement;
}// 计算寻道时间
int calculateSeekTime(int armMovement, int timePerTrack) {return armMovement * timePerTrack;
}// 计算平均旋转延迟时间
int calculateRotationDelay(int armMovement, int diskSpeed) {return (armMovement * 60000) / diskSpeed; // 因转速为转/分钟,转成毫秒需要乘以60000
}// 计算传输时间
int calculateTransferTime(int numRequests, int sectorsPerTrack, int sectorSize, int diskSpeed) {int transferTime = (numRequests * sectorsPerTrack * sectorSize * 1000) / diskSpeed; // 字节数除以转速得到毫秒数return transferTime;
}// 计算总处理时间
int calculateTotalProcessingTime(int seekTime, int rotationDelay, int transferTime) {return seekTime + rotationDelay + transferTime;
}// 显示引臂移动序列
void displayArmMovementSequence(const vector<int>& movementSequence) {for (int i = 0; i < movementSequence.size(); ++i) {cout << movementSequence[i] << " ";}cout << endl;
}// SSTF算法
void sstfAlgorithm(vector<int>& ioRequests, int currentTrack, int timePerTrack, int diskSpeed, int sectorsPerTrack, int sectorSize) {cout << "SSTF算法:" << endl;vector<int> armMovementSequence;armMovementSequence.push_back(currentTrack); // 先添加当前磁道到移动序列while (!ioRequests.empty()) {int minDistance = INT_MAX;int nextTrack = -1;for (int i = 0; i < ioRequests.size(); ++i) {int distance = abs(currentTrack - ioRequests[i]);if (distance < minDistance) {minDistance = distance;nextTrack = ioRequests[i];}}armMovementSequence.push_back(nextTrack);currentTrack = nextTrack;ioRequests.erase(find(ioRequests.begin(), ioRequests.end(), nextTrack));}displayArmMovementSequence(armMovementSequence);int armMovement = calculateArmMovement(armMovementSequence);int seekTime = calculateSeekTime(armMovement, timePerTrack);int rotationDelay = calculateRotationDelay(armMovement, diskSpeed);int numRequests = ioRequests.size();int transferTime = calculateTransferTime(numRequests, sectorsPerTrack, sectorSize, diskSpeed);int totalProcessingTime = calculateTotalProcessingTime(seekTime, rotationDelay, transferTime);cout << "引臂移动量: " << armMovement << endl;cout << "寻道时间: " << seekTime << " 毫秒" << endl;cout << "平均旋转延迟时间: " << rotationDelay << " 毫秒" << endl;cout << "传输时间: " << transferTime << " 毫秒" << endl;cout << "所有访问处理时间: " << totalProcessingTime << " 毫秒" << endl;
}//SCAN算法
void scanAlgorithm(vector<int>& ioRequests, int currentTrack, int timePerTrack, int diskSpeed, int sectorsPerTrack, int sectorSize) {cout << "SCAN算法:" << endl;vector<int> scanArmMovementSequence;int maxTrack = *max_element(ioRequests.begin(), ioRequests.end());int minTrack = *min_element(ioRequests.begin(), ioRequests.end());scanArmMovementSequence.push_back(currentTrack);vector<int> tempStack;vector<bool> visitedTracks(200, false); // 初始化标记数组,200是磁道的数量if (currentTrack >= maxTrack) {// 先向内扫描tempStack.push_back(0); // 添加0进入栈visitedTracks[0] = true;for (int track = currentTrack - 1; track >= minTrack; --track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end() && !visitedTracks[track]) {tempStack.push_back(track);visitedTracks[track] = true;}}sort(tempStack.begin(), tempStack.end()); // 对栈进行排序// 将栈中的磁道添加到移动序列for (int track : tempStack) {scanArmMovementSequence.push_back(track);}// 到达最小磁道号后折返,向外扫描for (int track = minTrack + 1; track <= maxTrack; ++track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end() && !visitedTracks[track]) {scanArmMovementSequence.push_back(track);visitedTracks[track] = true;}}} else {// 先向外扫描tempStack.push_back(199); // 添加199进入栈visitedTracks[199] = true;for (int track = currentTrack + 1; track <= maxTrack; ++track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end() && !visitedTracks[track]) {tempStack.push_back(track);visitedTracks[track] = true;}}sort(tempStack.begin(), tempStack.end()); // 对栈进行排序// 将栈中的磁道添加到移动序列for (int track : tempStack) {scanArmMovementSequence.push_back(track);}// 到达最大磁道号后折返,向内扫描for (int track = maxTrack - 1; track >= minTrack; --track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end() && !visitedTracks[track]) {scanArmMovementSequence.push_back(track);visitedTracks[track] = true;}}}displayArmMovementSequence(scanArmMovementSequence);int scanArmMovement = calculateArmMovement(scanArmMovementSequence);int scanSeekTime = calculateSeekTime(scanArmMovement, timePerTrack);int scanRotationDelay = calculateRotationDelay(scanArmMovement, diskSpeed);int scanNumRequests = ioRequests.size();int scanTransferTime = calculateTransferTime(scanNumRequests, sectorsPerTrack, sectorSize, diskSpeed);int scanTotalProcessingTime = calculateTotalProcessingTime(scanSeekTime, scanRotationDelay, scanTransferTime);cout << "引臂移动量: " << scanArmMovement << endl;cout << "寻道时间: " << scanSeekTime << " 毫秒" << endl;cout << "平均旋转延迟时间: " << scanRotationDelay << " 毫秒" << endl;cout << "传输时间: " << scanTransferTime << " 毫秒" << endl;cout << "所有访问处理时间: " << scanTotalProcessingTime << " 毫秒" << endl;// 在最后释放visitedTracks的空间visitedTracks.clear();displayArmMovementSequence(scanArmMovementSequence);
}// LOOK算法
void lookAlgorithm(vector<int>& ioRequests, int currentTrack, string direction, int timePerTrack, int diskSpeed, int sectorsPerTrack, int sectorSize) {cout << "LOOK算法:" << endl;vector<int> armMovementSequence;int maxTrack = *max_element(ioRequests.begin(), ioRequests.end());int minTrack = *min_element(ioRequests.begin(), ioRequests.end());armMovementSequence.push_back(currentTrack); // 先添加当前磁道到移动序列if (direction == "outward") {// 向外扫描for (int track =  currentTrack + 1; track <= maxTrack; ++track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end()) {armMovementSequence.push_back(track);}}// 向内扫描for (int track = currentTrack - 1; track >= minTrack; --track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end()) {armMovementSequence.push_back(track);}}} else {// 向内扫描for (int track = currentTrack - 1; track >= minTrack; --track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end()) {armMovementSequence.push_back(track);}}// 向外扫描for (int track = currentTrack + 1; track <= maxTrack; ++track) {if (find(ioRequests.begin(), ioRequests.end(), track) != ioRequests.end()) {armMovementSequence.push_back(track);}}}displayArmMovementSequence(armMovementSequence);int armMovement = calculateArmMovement(armMovementSequence);int seekTime = calculateSeekTime(armMovement, timePerTrack);int rotationDelay = calculateRotationDelay(armMovement, diskSpeed);int numRequests = ioRequests.size();int transferTime = calculateTransferTime(numRequests, sectorsPerTrack, sectorSize, diskSpeed);int totalProcessingTime = calculateTotalProcessingTime(seekTime, rotationDelay, transferTime);cout << "引臂移动量: " << armMovement << endl;cout << "寻道时间: " << seekTime << " 毫秒" << endl;cout << "平均旋转延迟时间: " << rotationDelay << " 毫秒" << endl;cout << "传输时间: " << transferTime << " 毫秒" << endl;cout << "所有访问处理时间: " << totalProcessingTime << " 毫秒" << endl;
}// 根据选择的调度算法进行处理
void processAlgorithm(vector<int>& ioRequests, int currentTrack, int timePerTrack, int startupTime, int diskSpeed, int sectorsPerTrack, int sectorSize, const string& algorithmName) {vector<int> armMovementSequence;if (algorithmName == "FCFS") {armMovementSequence = ioRequests;  // 直接按照顺序处理请求} else if (algorithmName == "SSTF") {sstfAlgorithm(ioRequests, currentTrack, timePerTrack, diskSpeed, sectorsPerTrack, sectorSize);return;} else if (algorithmName == "SCAN") {scanAlgorithm(ioRequests, currentTrack, timePerTrack, diskSpeed, sectorsPerTrack, sectorSize);return;} else if (algorithmName == "LOOK") {lookAlgorithm(ioRequests, currentTrack, "outward", timePerTrack, diskSpeed, sectorsPerTrack, sectorSize);return;} else {cout << "未知的调度算法:" << algorithmName << endl;return;}armMovementSequence.insert(armMovementSequence.begin(), currentTrack);  // 加入初始位置displayArmMovementSequence(armMovementSequence);int armMovement = calculateArmMovement(armMovementSequence);int seekTime = calculateSeekTime(armMovement, timePerTrack);int rotationDelay = calculateRotationDelay(armMovement, diskSpeed);int numRequests = ioRequests.size();int transferTime = calculateTransferTime(numRequests, sectorsPerTrack, sectorSize, diskSpeed);int totalProcessingTime = calculateTotalProcessingTime(seekTime, rotationDelay, transferTime);cout << "引臂移动量: " << armMovement << endl;cout << "寻道时间: " << seekTime << " 毫秒" << endl;cout << "平均旋转延迟时间: " << rotationDelay << " 毫秒" << endl;cout << "传输时间: " << transferTime << " 毫秒" << endl;cout << "所有访问处理时间: " << totalProcessingTime << " 毫秒" << endl;
}int main() {int initialTrack; // 磁头初始位置cout << "请输入磁头初始位置:";cin >> initialTrack;int timePerTrack;  // 跨越1个磁道所用时间(毫秒)int startupTime;   // 启动时间(毫秒)int diskSpeed;     // 磁盘转速(转/分钟)int sectorsPerTrack;  // 每磁道扇区数int sectorSize;    // 每扇区字节数cout << "请输入跨越1个磁道所用时间(毫秒):";cin >> timePerTrack;cout << "请输入启动时间(毫秒):";cin >> startupTime;cout << "请输入磁盘转速(转/分钟):";cin >> diskSpeed;cout << "请输入每磁道扇区数:";cin >> sectorsPerTrack;cout << "请输入每扇区字节数:";cin >> sectorSize;vector<int> ioRequests;vector<int> diskTrackNumbers;for(int i=1; i<201; i++){diskTrackNumbers.push_back(i);} // 磁道号固定为0到10int currentTrack = initialTrack; // 修改为用户输入的初始位置string direction = (generateRandomNumber(0, 1) == 0) ? "outward" : "inward"; // 添加这一行以初始化方向// 生成随机磁道I/O请求序列cout << "生成的随机磁道I/O请求序列:" << endl;for (int i = 0; i < 6; ++i) {int track = generateRandomNumber(0, diskTrackNumbers.size() - 1);ioRequests.push_back(diskTrackNumbers[track]);cout << ioRequests[i] << " ";}cout << endl;// 选择调度算法string algorithmName;cout << "请选择调度算法(FCFS、SSTF、SCAN、LOOK):";cin >> algorithmName;// 处理IO请求processAlgorithm(ioRequests, currentTrack, timePerTrack, startupTime, diskSpeed, sectorsPerTrack, sectorSize, algorithmName);return 0;
}

 源代码示例

 运行结果截图

FCFS算法

SSTF算法

 SCAN算法

LOOK算法

 注意事项

1、算法可能有点问题,大多数情况下是没有问题的

2、由于不同编译器可能不兼容,所以本人把代码都写在一起,避免了分文件造成的错误

这篇关于成都工业学院2021级操作系统专周课程设计FCFS,SSTF,SCAN,LOOK算法的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500775

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1