redis:四、双写一致性的原理和解决方案(延时双删、分布式锁、异步通知MQ/canal)、面试回答模板

本文主要是介绍redis:四、双写一致性的原理和解决方案(延时双删、分布式锁、异步通知MQ/canal)、面试回答模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

双写一致性

场景导入

如果现在有个数据要更新,是先删除缓存,还是先操作数据库呢?当多个线程同时进行访问数据的操作,又是什么情况呢?

以先删除缓存,再操作数据库为例

多个线程运行的正常的流程应该如下:
线程1先访问数据,它首先删除缓存,然后更新数据库。之后线程2来查询缓存,未命中后查询数据库,随后写入缓存。
也就是说,线程1负责删除缓存并更新数据库,线程2负责查询数据库并写入缓存。
在这里插入图片描述

但如果线程2在线程1还未更新数据库的时候,就查询数据库了,那么就会出问题。
在这里插入图片描述

以先操作数据库,再删除缓存为例。

正常流程应该如下:
线程2负责更新数据库并删除缓存。线程1负责查询数据库,并写入缓存。
其实也可以说

线程1负责更新数据库并删除缓存。线程2负责查询数据库,并写入缓存。

我把上面的“以先删除缓存,再操作数据库为例”搬过来了,可以对比一下。

也就是说,线程1负责删除缓存并更新数据库,线程2负责查询数据库并写入缓存。

发现就是前半部分顺序颠倒了而已。
在这里插入图片描述
同样的,

但如果线程1在线程2还更新数据库的时候,就查询数据库了,那么就会出问题。

我同样把上面的异常情况搬过来对比。

但如果线程2在线程1还未更新数据库的时候,就查询数据库了,那么就会出问题。

在这里插入图片描述

定义

当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致

解决方案

能保障强一致性:延时双删、分布式锁
不能保障强一致性,只能保障最终的一致性:异步通知

延时双删(强一致性)

延时双删就是正常删除缓存、修改数据库后还要延时一会再次删除缓存。
在这里插入图片描述
因为从上面的场景导入,我们发现,无论是先删除缓存还是先修改数据库,都会有数据不一致,即脏数据的风险。

再次把先删除缓存,再修改数据库的异常流程图拿过来,我们发现整个流程走完后,线程1更新数据库,拿到的是正确的值。而线程2拿到的是错误的值,这时只要我们以数据库为主,删除缓存,再写入数据库的值,那么就能拿到正确的值。

在这里插入图片描述
此外,延时一会是因为一般数据库都是主从分离,读写分离的。延时是为了让主库有时间通知到从库,所有数据库的更新操作全部走完。
延时双删极大程度上避免了脏数据的风险,但因为有延时的存在,延时时间不好控制,所以也不能说百分百避免。

分布式锁(强一致性)

互斥锁

直接加互斥锁能保障数据的强一致性,但是性能较低。此时我们就需要优化一下互斥锁。因为存入缓存的数据,一般都是读多写少。为此我们引入两个单独的锁,分别叫共享锁和排他锁。

共享锁/读锁

共享锁,又叫读锁(readLock),加锁之后,其他线程可以共享读操作。

排他锁/独占锁

排他锁,又叫独占锁(writeLock),加锁之后,阻塞其他线程读和写操作。

混合使用的流程和代码

在这里插入图片描述
我们想要拿到共享锁或者排他锁,都需要先拿到读写锁。
通过固定代码可以拿到读写锁。

RReadWriteLock readWriteLock = redissonClient.getReadWriteLock("ITEM_READ_WRITE_LOCK");

随后分别拿到共享锁和排他锁。(注意两个锁需要是同一把读写锁)

RLock readLock = readWriteLock.readLock();
RLock writeLock = readWriteLock.writeLock();

读操作的代码

public void getById(Integer id){RReadWriteLock readWriteLock = redissonClient.getReadWriteLock("ITEM_READ_WRITE_LOCK");RLock readLock = readWriteLock.readLock();try{readLock.lock();System.out.println("readLock...");Item item = (Item) redisTemplate.opsForValue().get("item"+id);if(item != null){return item;}item = new Item(id, "华为手机", "华为手机", 5999.00);redisTemplate.opsForValue().set("item"+id, item);return item;}finally{readLock.unlock();}
}

写操作的代码

public void updateById(Integer id){RReadWriteLock readWriteLock = redissonClient.getReadWriteLock("ITEM_READ_WRITE_LOCK");RLock writeLock = readWriteLock.writeLock();try{writeLock.lock();System.out.println("writeLock...");Item item = new Item(id, "华为手机", "华为手机", 5299.00);try{Thread.sleep(10000);}catch(InterruptedException e){e.printStackTrace();}redisTemplate.delete("item"+id);}finally{writeLock.unlock();}
}

异步通知

异步通知的也有两个主流方案:MQ、Canal
在这里插入图片描述


在这里插入图片描述
canal的方案对于业务代码几乎是零侵入的。

面试回答模板

redis为缓存,mysql的数据如何与redis进行同步呢?

背熟以下回答,大概用时1min。

这个要看业务需求,如果要求数据的强一致性,那么一般使用读写锁来实现。读写锁是一种分布式锁机制,里面包括两种锁,一个叫共享锁,在读的时候添加共享锁,可以保证读读不互斥,读写互斥。一个叫排他锁,在写的时候添加排他锁,可以保证读写都互斥,避免脏数据的风险。
如果不要求数据的强一致性,那么就可以用基于MQ或者canal中间件的异步通知,来实现redis和mysql的双写一致性。

你的项目中用到了redis,那你mysql的数据如何与redis进行同步呢?

——————————————强一致性策略——————————————————

以我最近做的这个项目为例,里面有xxxx(根据自己的简历上写)的功能,需要让数据库与redis高度保持一致,因为要求时效性比较高,我们当时采用的读写锁保证的强一致性。
读写锁是一种分布式锁机制,里面包括两种锁,一个叫共享锁,在读的时候添加共享锁,可以保证读读不互斥,读写互斥。一个叫排他锁,在写的时候添加排他锁,可以保证读写都互斥,避免脏数据的风险。这里面需要注意的是读方法和写方法上需要使用同一把锁才行。

面试官:那这个排他锁是如何保证读写、读读互斥的呢?

候选人:其实排他锁底层使用也是setnx,保证了同时只能有一个线程操作锁住的方法

面试官:你听说过延时双删吗?为什么不用它呢?

候选人:延迟双删,如果是写操作,我们先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据,其中这个延时多久不太好确定,在延时的过程中可能会出现脏数据,并不能保证强一致性,所以没有采用它。

——————————————非强一致性策略——————————————————

面试官:redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)

候选人:嗯!就说我最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,数据同步可以有一定的延时(符合大部分业务)

我们当时采用的阿里的canal组件实现数据同步:不需要更改业务代码,部署一个canal服务。canal服务把自己伪装成mysql的一个从节点,当mysql数据更新以后,canal会读取binlog数据,然后在通过canal的客户端获取到数据,更新缓存即可。

这篇关于redis:四、双写一致性的原理和解决方案(延时双删、分布式锁、异步通知MQ/canal)、面试回答模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500715

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱