算法通关第十九关-青铜挑战理解动态规划

2023-12-16 13:28

本文主要是介绍算法通关第十九关-青铜挑战理解动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好我是苏麟 , 今天聊聊动态规划 .

动态规划是最热门、最重要的算法思想之一,在面试中大量出现,而且题目整体都偏难一些对于大部人来说,最大的问题是不知道动态规划到底是怎么回事。很多人看教程等,都被里面的状态子问题、状态转移方程等等劝退了。
其实,所谓的状态就是一个数组,动态规划里的状态转移方程就是更新这个数组的方法。这一关,我们先理解动态规划到底怎么回事。

大纲

    • 热身 : 斐波那契数列
    • 路径连环问题
      • 基本问题 : 统计路径总数
      • 用二维数组优化递归
      • 拓展问题 : 最小路径和

热身 : 斐波那契数列

首先来感受一下什么是重复计算记忆化搜索

public class FibonacciTest {public static int count = 0;public static void main(String[] args) {fibonacci(20);System.out.println("count:" + count);}public static int fibonacci(int n) {System.out.println("斐波那契数列");count++;if (n == 0) {return 1;}if (n == 1 || n == 2)return n;else {return fibonacci(n - 1) + fibonacci(n - 2);}}
}

这个就是斐波那契数列,当n为20时,count是21891次。而当n=30 的时候结果是2692537,也就是接270万。如果纯粹只是算斐波那契数列,我们可以直接循环:

    public static int count_2 = 0;public int fibonacci(int n) {if (n <= 2) {count_2++;return n;}int f1 = 1;int f2 = 2;int sum = 0;for (int i = 3; i <= n; i++) {count_2++;sum = f1 + f2;f1 = f2;f2 = sum;}return sum;}

n为30时也不过计算二十几个数的累加,但是为什么采用递归竟然高达270万呢?
因为里面存在大量的重复计算,数越大,重复越多。例如当n=10的时候,我们看下面的结构图就已经有很多重复计算了:
在这里插入图片描述

上面我们在计算f(10)时,可以看到f(9)、f(8)等等都需要计算,这就是重叠子问题。怎么对其优化一下呢?
可以看到这里主要的问题是很多数据都会频繁计算,如果将计算的结果保存到一个一维数组里。把 n 作为我们的数组下标,f(n)作为值,也就是 arr[n] = f(n)。执行的时候如果某人位置已经被计算出来了就更新对应位置的数组值,例如 f(4)算完了,就将其保存到arr[4]中,当后面再次要计算 f(4) 的时候,我们判断f(4)已经计算过,因此直接读取 f(4) 的值,不再递归计算。代码如下:

        public static int[] arr = new int[50];public static int count_3 = 0;Arrays.fill(arr, -1);arr[0] = 1;int fibonacci ( int n){if (n == 2 || n == 1) {count_3++;arr[n] = n;return n;}if (arr[n] != -1) {count_3++;return arr[n];} else {count_3++;arr[n] = fibonacci(n - 1) + fibonacci(n - 2);return arr[n];}}

在上面代码里,在执行递归之前先查数组看是否被计算过,如果重复计算了,就直接读取,这就叫”记忆化搜索“,就这么简单。

路径连环问题

基本问题 : 统计路径总数

描述 :

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

题目 :

LeetCode 62. 不同路径 :

不同路径

在这里插入图片描述
分析 :

我们先从一个3x2的情况来分析:

在这里插入图片描述
我们的目标是从起点到终点,因为只能向右或者向下,从图中可以可以看到:

1.如果向右走,也就是图1的情况,后面是一个3x1的矩阵,此时起点下面的两个灰色位置就不会再访问了,只能从绿色位置一直向下走,只有一种路径。

2.如果是向下走,我们可以看到原始起点右侧的就不能再访问了,而剩下的又是一个2X2的矩阵,也就是从图中绿色位置到红色位置,此时仍然可以选择向右或者向下,一共有两种路径。

所以上面的情况加起来就是一共有3种。

我们再看一下3X3的 :
在这里插入图片描述
可以看到,一个3X3的矩阵下一步就变成了一个3X2或者2X3的矩阵,而总路径数,也是是两者各自的路径之和。
因此,对于一个mxn的矩阵,求路径的方法search(m,n)就是:search(m-1,n)+search(m,n-1);
递归的含义就是处理方法不变,但是问题的规模减少了

解析 :

注意 :递归的方式会超出时间限制

class Solution {public int uniquePaths(int m, int n) {return dp(m,n);}public int dp(int m,int n){if(n == 1 || m == 1){return 1;}return dp(m - 1,n) + dp(m,n - 1);}
} 

用二维数组优化递归

我们来优化递归的问题,研究如何结合二维数组来实现记忆化搜索.

从上面这个树也可以看到在递归的过程中存在重复计算的情况,例如1,1出现了两次,如果是一个NXN的空间,那 1.0 和 0,1 的后续计算也是一样的。从二维数组的角度,例如在位置(1,1)处,不管从(0,1)还是(1,0)到来,接下来都会产生2种走法,因此不必每次都重新遍历才得到结果。

在这里插入图片描述
为此,我们可以采取一个二维数组来进行记忆化搜索,算好的就记录在数组中,也就是这样子:
在这里插入图片描述
每个格子的数字表示从起点开始到达当前位置有几种方式,这样我们计算总路径的时候可以先查一下二维数组有没有记录,如果有记录就直接读,没有再计算,这样就可以大量避免重复计算,这就是记忆化搜索

根据上面的分析,我们可以得到两个规律:
1.第一行和第一列都是1。
2.其他格子的值是其左侧和上方格子之和。对于其他m,n的格子,该结论一样适用的,例如:
在这里插入图片描述
比如图中的4,是有上面的1和左侧的3计算而来,15是上侧的5和左侧的10计算而来。如果用公式表示就是:

在这里插入图片描述

解析 :

class Solution {public int uniquePaths(int m, int n) {int[][] arr = new int[m][n];arr[0][0] = 1;for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(i > 0 && j > 0){arr[i][j] = arr[i - 1][j] + arr[i][j - 1];}else if(i > 0){arr[i][j] = arr[i - 1][j];}else if(j > 0){arr[i][j] = arr[i][j - 1];}}}return arr[m - 1][n - 1];}
} 

拓展问题 : 最小路径和

描述 :

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

题目 :

LeetCode 64. 最小路径和 :

最小路径和 :

在这里插入图片描述
分析 :

这道题是在上面题目的基础上,增加了路径成本概念。由于题目限定了我们只能[往下]或者[往右]移动,因此我们按照当前位置可由哪些位置转移过来 进行分析:

  • 当前位置只能通过[往下] 移动而来,即有f[i][j] = f[i-1][j] + grid[i][j]
  • 当前位置只能通过[往右]移动而来,即有 f[i][j] = f[i][j-1] + grid[i][j]
  • 当前位置既能通过[往下]也能[往右] 移动,即有f[i][j] = min(f[i][j - 1],f[i - 1][j]) + grid[i][j]

二维数组的更新过程,我们可以图示一下:

在这里插入图片描述
我们现在可以引入另外一个概念状态: 所谓状态就是下面表格更新到最后的二维数组,而通过前面格子计算后面格子的公式就叫状态转移方程。如果用数学表达就是:

在这里插入图片描述

所谓的确定状态转移方程就是要找递推关系,通常我们会从分析首尾两端的变化规律来入手。

解析 :

class Solution {public int minPathSum(int[][] grid) {int m = grid.length;int n = grid[0].length;int[][] arr = new int[m][n];for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(i == 0 && j == 0){arr[i][j] = grid[i];}else{int top = i - 1 >= 0 ? arr[i - 1][j] + grid[i][j] : Integer.MAX_VALUE; int left = j - 1 >= 0 ? arr[i][j - 1] + grid[i][j] :
Integer.MAX_VALUE;arr[i][j] = Math.min(top,left);}}}return arr[m - 1][n - 1];}
}

这期就到这里下期见 !

这篇关于算法通关第十九关-青铜挑战理解动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500630

相关文章

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配