深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping)

本文主要是介绍深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果训练的模型过拟合,也就是高方差,我们首先想到的是正则化。高方差的解决方法有准备充足的数据,但是有时候我们无法找到足够的数据。下文详细说明正则化方法,包括L2正则化(菲罗贝尼乌斯)、dropout机制、数据扩增、Early stopping。

一、逻辑回归中的正则化

需要求得损失函数 J ( w , b ) J(w,b) J(w,b)的最小值,已知
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y (i),y(i))
在此基础上添加正则化参数 λ \lambda λ
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∣ ∣ w ∣ ∣ 2 2 J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)})+\frac{\lambda}{2m}||w||_2^2 J(w,b)=m1i=1mL(y (i),y(i))+2mλw22
其中 w w w的欧几里得范数的平方等于元素平方和
L 2 r e g u l a r i z a t i o n : ∣ ∣ w ∣ ∣ 2 2 = ∑ j = 1 n x w j 2 = w T w L2 regularization:||w||_2^2=\sum_{j=1}^{n_x} w_j^2=w^Tw L2regularization:w22=j=1nxwj2=wTw
为什么省略b,因为w通常是一个高维参数矢量,已经可以表达高方差的情况,b对参数影响并不显著。
L 1 : λ 2 m ∑ j = 1 n x ∣ w j ∣ = λ 2 m ∣ ∣ w ∣ ∣ 1 L1:\frac{\lambda}{2m} \sum_{j=1}^{n_x}|w_j|=\frac{\lambda}{2m}||w||_1 L1:2mλj=1nxwj=2mλw1
如果用L1正则化,W向量会很稀疏,会有很多0,有人说利于压缩模型,实际上并没有降低很多内存。我们更倾向于L2正则化。顺便说, λ \lambda λ这个参数也是一个超参数,需要尝试哪个取值才是最优取值,为了方便编程,在Python中 λ \lambda λ是保留字段,编程通常写作lambd作为正则化参数变量。

二、神经网络中的L2正则化

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∑ l = 1 L ∣ ∣ w [ l ] ∣ ∣ F 2 J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)})+\frac{\lambda}{2m}\sum_{l=1}^L ||w^{[l]}||_F^2 J(w,b)=m1i=1mL(y (i),y(i))+2mλl=1Lw[l]F2
其中,
∣ ∣ w [ l ] ∣ ∣ F 2 = ∑ i = 1 n [ l − 1 ] ∑ j = 1 n [ 1 ] ( w i j [ l ] ) 2 ||w^{[l]}||_F^2=\sum_{i=1}^{n^{[l-1]}}\sum_{j=1}^{n^{[1]}}(w_{ij}^{[l]})^2 w[l]F2=i=1n[l1]j=1n[1](wij[l])2
L2范数,按照惯例称之为:Frobenius 菲罗贝尼乌斯范数,即矩阵中所有元素的平方和。

反向传播
d w [ l ] = ( f r o m b a c k p r o p ) + λ 2 m w [ l ] dw^{[l]}=(from backprop)+\frac{\lambda}{2m}w^{[l]} dw[l]=(frombackprop)+2mλw[l]

w [ l ] = w [ l ] − α d w [ l ] w^{[l]}=w^{[l]}-\alpha dw^{[l]} w[l]=w[l]αdw[l]

L2正则化被称作权重衰减的原因
w [ l ] = w [ l ] − α [ ( f r o m b a c k p r o p ) + λ 2 m w [ l ] ] w^{[l]}=w^{[l]}-\alpha[(from backprop)+\frac{\lambda}{2m}w^{[l]}] w[l]=w[l]α[(frombackprop)+2mλw[l]]

w [ l ] = w [ l ] − α λ 2 m w [ l ] − α ( f r o m b a c k p r o p ) w^{[l]}=w^{[l]}-\frac{\alpha \lambda}{2m}w^{[l]}-\alpha(frombackprop) w[l]=w[l]2mαλw[l]α(frombackprop)

从上面的式子可以看到,不管w是什么,总是试图使w变得更小。实际上是给w矩阵乘上了小于1的系数 1 − α λ 2 m 1-\frac{\alpha \lambda}{2m} 12mαλ

三、为什么正则化可以防止过拟合?

在这里插入图片描述
直觉经验告诉我们, λ \lambda λ足够大的时候,使得w权重小到0,那么神经网络中的隐藏单元失效(在初始化权重那一课有讲),这样网络结构更趋近于逻辑回归,所以防止了高方差(过拟合)的情况。

在这里插入图片描述
λ \lambda λ足够大的时候,w会变得很小,z同样会变得很小,在激活函数上落在近似线性的部分上。(在激活函数使用非线性那一课中讲到)隐藏层的激活函数是线性的,这个网络就是线性网络,不管网络有多深,实际上起不到更好的训练效果,模型趋近于逻辑回归,不会发生过拟合的情况。

为了调试梯度下降,务必使用新定义的J函数,包含正则化项,否则J可能不会在所有调幅范围内都单调递减。

四、dropout

除了L2正则化方法,还有非常使用的正则化方法——dropout(随机失活)
dropout会遍历网络每一层,并设置消除神经网络中节点的概率。通过前面的内容,一定很容易理解为什么dropout可以防止过拟合了,因为随机扔弃一部分节点后,网络结构变得更小,更趋近线性拟合,过拟合的可能性更小。
在这里插入图片描述

Inverted dropout的实现

keep_prob = 0.8
d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob
a3 = np.multiply(a3, d3)
a3 /= keep_prob

反向随机失活最后除以keep_prob确保a3的期望值不变。

五、dropout深入理解

在这里插入图片描述

  • 每一层有不同的keep_prob保留值,根据每一层具体情况,参数多容易过拟合应当降低keep_prob的取值
  • 输入层应尽可能接近1,因为是输入的是所需特征
  • 缺点是为了使用交叉验证,需要搜索更多超级参数
  • dropout在计算机视觉CV中应用频繁,维度很大但是数据较少
  • 除非过拟合,我们不应该使用dropout
  • 缺点还有代价函数很难明确定义(要求加入正则化项后J函数单减),通常做法是关闭dropout,将keep_prob设置为1.0后运行代码确保函数递减,再打开dropout函数。

六、其他正则化方法

数据扩增

  • 水平翻转
  • 随意裁剪
    在这里插入图片描述
  • 随意旋转
  • 扭曲数字
    在这里插入图片描述
    Early stopping
    在这里插入图片描述
    考虑两方面:
  • 选择算法优化代价函数J
    • 梯度下降
    • Momentum
    • RMSprop
    • Adam
  • 回避过拟合问题
    • 正则化
    • 扩增数据

提前停止训练不能同时解决如上两个问题。L2正则化通过尝试不同的正则化参数,但是需要承担很大的计算代价,如果不能承受很大的计算代价,early stopping也可以得到相似的结果。

这篇关于深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500297

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则