LeetCode 2415. 反转二叉树的奇数层:深度优先搜索(DFS)

2023-12-16 09:44

本文主要是介绍LeetCode 2415. 反转二叉树的奇数层:深度优先搜索(DFS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【LetMeFly】2415.反转二叉树的奇数层:深度优先搜索(DFS)

力扣题目链接:https://leetcode.cn/problems/reverse-odd-levels-of-binary-tree/

给你一棵 完美 二叉树的根节点 root ,请你反转这棵树中每个 奇数 层的节点值。

  • 例如,假设第 3 层的节点值是 [2,1,3,4,7,11,29,18] ,那么反转后它应该变成 [18,29,11,7,4,3,1,2]

反转后,返回树的根节点。

完美 二叉树需满足:二叉树的所有父节点都有两个子节点,且所有叶子节点都在同一层。

节点的 层数 等于该节点到根节点之间的边数。

 

示例 1:

输入:root = [2,3,5,8,13,21,34]
输出:[2,5,3,8,13,21,34]
解释:
这棵树只有一个奇数层。
在第 1 层的节点分别是 3、5 ,反转后为 5、3 。

示例 2:

输入:root = [7,13,11]
输出:[7,11,13]
解释: 
在第 1 层的节点分别是 13、11 ,反转后为 11、13 。 

示例 3:

输入:root = [0,1,2,0,0,0,0,1,1,1,1,2,2,2,2]
输出:[0,2,1,0,0,0,0,2,2,2,2,1,1,1,1]
解释:奇数层由非零值组成。
在第 1 层的节点分别是 1、2 ,反转后为 2、1 。
在第 3 层的节点分别是 1、1、1、1、2、2、2、2 ,反转后为 2、2、2、2、1、1、1、1 。

 

提示:

  • 树中的节点数目在范围 [1, 214]
  • 0 <= Node.val <= 105
  • root 是一棵 完美 二叉树

方法一:深度优先搜索(DFS)

这道题不要真的交换节点,因为交换节点会导致被交换节点的子节点顺序也发生变化。所谓“交换节点”,其实只需要“交换节点的值”即可。

不难发现,若某层需要发生交换,只需要“第1个节点跟最后一个节点换”、“第2个节点跟倒数第二个节点换”、…

因此写一个函数dfs,接收三个参数“节点1”、“节点2”、“是否需要交换”。在递归时,将“节点1的left 和 节点2的right”放到一起递归,“节点1的right 和 节点2的left”放到一起递归即可。

  • 时间复杂度 O ( n ) O(n) O(n),其中 n n n是二叉树节点个数
  • 空间复杂度 O ( n ) O(n) O(n)

AC代码

C++
class Solution {
private:void dfs(TreeNode* left, TreeNode* right, bool shouldReverse) {if (!left) {return ;}if (shouldReverse) {swap(left->val, right->val);}dfs(left->left, right->right, !shouldReverse);dfs(left->right, right->left, !shouldReverse);}
public:TreeNode* reverseOddLevels(TreeNode* root) {dfs(root->left, root->right, true);return root;}
};
Python
# from typing import Optional# # Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = rightclass Solution:def dfs(self, left: Optional[TreeNode], right: Optional[TreeNode], shouldReverse: bool) -> None:if not left:returnif shouldReverse:left.val, right.val = right.val, left.valself.dfs(left.left, right.right, not shouldReverse)self.dfs(left.right, right.left, not shouldReverse)def reverseOddLevels(self, root: TreeNode) -> TreeNode:self.dfs(root.left, root.right, True)return root

同步发文于CSDN,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/135020080

这篇关于LeetCode 2415. 反转二叉树的奇数层:深度优先搜索(DFS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500023

相关文章

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、