代码随想录第三十三天(一刷C语言)|斐波那契数爬楼梯使用最小花费爬楼梯

本文主要是介绍代码随想录第三十三天(一刷C语言)|斐波那契数爬楼梯使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

创作目的:为了方便自己后续复习重点,以及养成写博客的习惯。

动态规划步骤:

  1. 确定dp数组以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

一、斐波那契数

思路:参考carl文档

1、dp[i]的定义为:第i个数的斐波那契数值是dp[i]。

2、递推公式为: dp[i] = dp[i - 1] + dp[i - 2]。

3、dp数组初始化:dp[0] = 0,dp[1] = 1。

4、从递归公式可以看出,dp[i]是依赖于 dp[i - 1] 和 dp[i - 2],遍历的顺序为从前到后遍历。

5、自己模拟推到dp数组,debug的时候添加打印。

ledcode题目:https://leetcode.cn/problems/fibonacci-number/

AC代码:

int fib(int n){//当n <= 1时,返回nif(n <= 1)return n;//动态开辟一个int数组,大小为n+1int *dp = (int *)malloc(sizeof(int) * (n + 1));//设置0号位为0,1号为为1dp[0] = 0;dp[1] = 1;//从前向后遍历数组(i=2; i <= n; ++i),下标为n时的元素为dp[i-1] + dp[i-2]int i;for(i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];
}

二、爬楼梯

思路:参考carl文档

1、dp[i]的定义为: 爬到第i层楼梯,有dp[i]种方法。

2、确定递推公式:dp[i] = dp[i - 1] + dp[i - 2] 。

3、dp数组初始化:不初始化dp[0],只初始化dp[1] = 1,dp[2] = 2,从i = 3开始递推。

4、从递推公式可知遍历顺序是从前向后遍历。

5、举例当n为4的时候,dp[4] = 5。

lecode题目:https://leetcode.cn/problems/climbing-stairs/description/

AC代码:

int climbStairs(int n){//若n<=2,返回nif(n <= 2)return n;//初始化dp数组,数组大小为n+1int *dp = (int *)malloc(sizeof(int) * (n + 1));dp[0] = 0, dp[1] = 1, dp[2] = 2;//从前向后遍历数组,dp[i] = dp[i-1] + dp[i-2]int i;for(i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}//返回dp[n]return dp[n];
}

三、使用最小花费爬楼梯

思路:参考carl文档

1、dp[i]的定义为:到达第i台阶所花费的最少体力为dp[i]。

2、确定递推公式为:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])。

3、dp数组初始化:dp[0] = 0,dp[1] = 0。

4、dp[i]由dp[i-1]dp[i-2]推出,故从前到后遍历cost数组。

5、举例推导dp数组(模拟一组cost)

ledcode题目:https://leetcode.cn/problems/min-cost-climbing-stairs/description/

AC代码:

#include <math.h>
int minCostClimbingStairs(int *cost, int costSize) {int dp[costSize + 1];dp[0] = dp[1] = 0;for (int i = 2; i <= costSize; i++) {dp[i] = fmin(dp[i - 2] + cost[i - 2], dp[i - 1] + cost[i - 1]);}return dp[costSize];
}

全篇后记:

        开启全新篇章动态规划,之前有刷过但是不成体系,希望能一刷掌握思路与方法,给后面的刷题打下坚实的基础。

这篇关于代码随想录第三十三天(一刷C语言)|斐波那契数爬楼梯使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499036

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展