GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)

本文主要是介绍GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

之前发表了两篇关于影像修复的文章,并且制作了APP,大家可以去看以下的两篇博客来了解具体的研究内容和整个方法的有效性:

Google Earth Engine APP——影像条带色差、色调不均匀等现象解决方案Landsat5 NDWI Image Restoration APP_ndwi不能识别泛红水体怎么办-CSDN博客

基于GEE云平台一种快速修复Landsat影像条带色差的方法_gee平台-CSDN博客

影像条带色差产生的主要原因有以下几点:

1. 光学系统问题:光学系统中的透镜、滤光片等元件可能存在偏差或缺陷,导致不同波长的光在传输过程中被聚焦的位置不一致,从而产生色差。

2. 图像传感器问题:图像传感器中的像素单元可能对不同波长的光的响应度不同,导致不同波长的光在图像传感器上形成的图像亮度不一致,从而产生色差。

3. 色彩处理问题:在图像的处理过程中,可能会对不同波长的光进行不同的处理,如增强某个颜色通道的亮度或饱和度,从而导致色差。

4. 环境光影响:在拍摄现场,环境光的波长和强度可能有所不同,对拍摄的影像产生影响,从而产生色差。

总的来说,影像条带色差的产生主要是由于光学系统、图像传感器、色彩处理和环境光等多个因素综合作用的结果。

函数:

本文里面的主要使用的函数众多,包含了归一化函数,直方图统计,机器学习方法以及图形展示等 

normalizedDifference(bandNames)

Computes the normalized difference between two bands. If the bands to use are not specified, uses the first two bands. The normalized difference is computed as (first − second) / (first + second). Note that the returned image band name is 'nd', the input image properties are not retained in the output image, and a negative pixel value in either input band will cause the output pixel to be masked. To avoid masking negative input values, use ee.Image.expression() to compute normalized difference.

Arguments:

this:input (Image):

The input image.

bandNames (List, default: null):

A list of names specifying the bands to use. If not specified, the first and second bands are used.

Returns: Image

CLOSE

ee.ImageCollection.fromImages(images)

Returns the image collection containing the given images.

Arguments:

images (List):

The images to include in the collection.

Returns: ImageCollection

ui.Chart.image.histogram(image, regionscalemaxBucketsminBucketWidthmaxRawmaxPixels)

Generates a Chart from an image. Computes and plots histograms of the values of the bands in the specified region of the image.

  • X-axis: Histogram buckets (of band value).

  • Y-axis: Frequency (number of pixels with a band value in the bucket).

Returns a chart.

Arguments:

image (Image):

The image to generate a histogram from.

region (Feature|FeatureCollection|Geometry, optional):

The region to reduce. If omitted, uses the entire image.

scale (Number, optional):

The pixel scale used when applying the histogram reducer, in meters.

maxBuckets (Number, optional):

The maximum number of buckets to use when building a histogram; will be rounded up to a power of 2.

minBucketWidth (Number, optional):

The minimum histogram bucket width, or null to allow any power of 2.

maxRaw (Number, optional):

The number of values to accumulate before building the initial histogram.

maxPixels (Number, optional):

If specified, overrides the maximum number of pixels allowed in the histogram reduction. Defaults to 1e6.

Returns: ui.Chart

setSeriesNames(seriesNames, seriesIndex)

Returns a copy of this chart with updated series names.

Arguments:

this:ui.chart (ui.Chart):

The ui.Chart instance.

seriesNames (Dictionary|Dictionary<String>|List|List<String>|String):

New series names. If it's a string, the name of the series at seriesIndex is set to seriesNames. If it's a list, the value at index i in the list is used as a label for series number i. If it's a dictionary or an object, it's treated as a map from existing series names to new series names. In the last two cases, seriesIndex is ignored.

seriesIndex (Number, optional):

The index of the series to rename. Ignored if seriesNames is a list or dictionary. Series are 0-indexed.

Returns: ui.Chart

ee.Reducer.histogram(maxBucketsminBucketWidthmaxRaw)

Create a reducer that will compute a histogram of the inputs.

Arguments:

maxBuckets (Integer, default: null):

The maximum number of buckets to use when building a histogram; will be rounded up to a power of 2.

这篇关于GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499024

相关文章

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消