对DataFrame数据按列处理

2023-12-16 02:08
文章标签 数据 处理 dataframe 按列

本文主要是介绍对DataFrame数据按列处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对DataFrame数据按列处理

获取列名使用.columns()函数。

import pandas as pd
df=pd.DataFrame({'id':[1,2,3,4,5],'a':[1, 3, 5, 7,9],'b':[2 , 4 , 6, 8, 19], 'c': [4, 6, 9, 12, 20],'d':['yes','yes','no','no','yes']})
df
idabcd
01124yes
12346yes
23569no
347812no
4591920yes
df.columns
Index(['id', 'a', 'b', 'c', 'd'], dtype='object')

注意df.columns的类型是Index,不可修改。

type(df.columns)
pandas.core.indexes.base.Index
df.columns[1]='d'
---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-12-ed755c965e42> in <module>
----> 1 df.columns[1]='d'C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)3908 3909     def __setitem__(self, key, value):
-> 3910         raise TypeError("Index does not support mutable operations")3911 3912     def __getitem__(self, key):TypeError: Index does not support mutable operations

如果要提取df中的某些列,比如需要对于数值类型和文本类型的列做不同的处理,就需要将二者分开。这里的文本类型是’d’,另外,'id’也不必参与到后续的数据处理当中去。

cate=['d']
num=df.columns.drop(cate).drop('id')
num
Index(['a', 'b', 'c'], dtype='object')

注意此处的.drop()会在不影响df.columns的内容的情况下生成一个去除了其中含有的cate之后的副本,如果其中不含有drop的内容还会报错,在对不同类型的列做处理时很实用。
与此对应,.remove()会在原列表上删除对象(所以对于Index是不可用的,对list可用),不产生副本,各有适用场合。

如果想获得列名称并进行操作,使用.tolist()。

col_name=df.columns.tolist()
type(col_name)
list
data_cate=df[cate]
data_num=df[num]

将数值型和文本型数据分开后可用分别处理,例如数值型做标准化,文本型做编码。如果需要把经过分别处理后的数据合成一个表,可以使用pd.concat()函数。

data_processed=pd.concat([data_cate,data_num],axis=1)
data_processed
dabc
0yes124
1yes346
2no569
3no7812
4yes91920

这篇关于对DataFrame数据按列处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498711

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl