对DataFrame数据按列处理

2023-12-16 02:08
文章标签 数据 处理 dataframe 按列

本文主要是介绍对DataFrame数据按列处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对DataFrame数据按列处理

获取列名使用.columns()函数。

import pandas as pd
df=pd.DataFrame({'id':[1,2,3,4,5],'a':[1, 3, 5, 7,9],'b':[2 , 4 , 6, 8, 19], 'c': [4, 6, 9, 12, 20],'d':['yes','yes','no','no','yes']})
df
idabcd
01124yes
12346yes
23569no
347812no
4591920yes
df.columns
Index(['id', 'a', 'b', 'c', 'd'], dtype='object')

注意df.columns的类型是Index,不可修改。

type(df.columns)
pandas.core.indexes.base.Index
df.columns[1]='d'
---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-12-ed755c965e42> in <module>
----> 1 df.columns[1]='d'C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)3908 3909     def __setitem__(self, key, value):
-> 3910         raise TypeError("Index does not support mutable operations")3911 3912     def __getitem__(self, key):TypeError: Index does not support mutable operations

如果要提取df中的某些列,比如需要对于数值类型和文本类型的列做不同的处理,就需要将二者分开。这里的文本类型是’d’,另外,'id’也不必参与到后续的数据处理当中去。

cate=['d']
num=df.columns.drop(cate).drop('id')
num
Index(['a', 'b', 'c'], dtype='object')

注意此处的.drop()会在不影响df.columns的内容的情况下生成一个去除了其中含有的cate之后的副本,如果其中不含有drop的内容还会报错,在对不同类型的列做处理时很实用。
与此对应,.remove()会在原列表上删除对象(所以对于Index是不可用的,对list可用),不产生副本,各有适用场合。

如果想获得列名称并进行操作,使用.tolist()。

col_name=df.columns.tolist()
type(col_name)
list
data_cate=df[cate]
data_num=df[num]

将数值型和文本型数据分开后可用分别处理,例如数值型做标准化,文本型做编码。如果需要把经过分别处理后的数据合成一个表,可以使用pd.concat()函数。

data_processed=pd.concat([data_cate,data_num],axis=1)
data_processed
dabc
0yes124
1yes346
2no569
3no7812
4yes91920

这篇关于对DataFrame数据按列处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498711

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模