CS231n作业笔记2.4:Batchnorm的实现与使用

2023-12-15 23:38

本文主要是介绍CS231n作业笔记2.4:Batchnorm的实现与使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CS231n简介

详见 CS231n课程笔记1:Introduction。
本文都是作者自己的思考,正确性未经过验证,欢迎指教。

作业笔记

Batchnorm的思想简单易懂,实现起来也很轻松,但是却具有很多优良的性质,具体请参考课程笔记。下图简要介绍了一下Batchnorm需要完成的工作以及优点(详情请见CS231n课程笔记5.3:Batch Normalization):
batchnorm
需要注意的有:

  1. 最后一步对归一化后的数据进行平移与缩放,且此参数可学习。
  2. 上诉参数对于x的每一维都具有相应的参数,故假设X.shape = [N,D],那么gamma.shape = [D,]

1. 前向传播

这里即实现上图所诉功能,需要注意的有:

  1. out_media的命名是为了后向传播的时候处理方便
  2. 使用var而不是std,这既符合图中公式,又方便了后向传播
  3. 计算out_media的时候,减法以及除法都做了broadcasting,对应于反向传播的时候sum
  4. 同理,计算out的时候,加法以及乘法也都做了broadcasting

注:broadcasting的部分请参考python、numpy、scipy、matplotlib的一些小技巧。

  if mode == 'train':mean = np.mean(x,axis = 0)var = np.var(x,axis = 0)running_mean = running_mean * momentum + (1-momentum) * meanrunning_var = running_var * momentum + (1-momentum) * varout_media = (x-mean)/np.sqrt(var + eps)out = (out_media + beta) * gammacache = (out_media,x,mean,var,beta,gamma,eps)elif mode == 'test':out = (x-running_mean)/np.sqrt(running_var+eps)out = (out + beta) * gammacache = (out,x,running_mean,running_var,beta,gamma,eps)

2. 后向传播

对前面所诉的前向传播过程做BP(详情参考CS231n课程笔记4.1:反向传播BP),值得注意的有:

  1. dgamma以及dbeta求值的时候由于前向传播那里使用了broadcasting,这里需要做求和。
  2. dvar也会向dmean传播,所以先分解dvar。
  3. 直接求解dvar过于复杂,使用dstd过渡。
  4. 每次求解的时候不要忘记乘以全局梯度。
  5. 对于dvar的分解,分别使用(x-mean)^2以及(x-mean)过渡。
  dout_media = dout * gammadgamma = np.sum(dout * (out_media + beta),axis = 0)dbeta = np.sum(dout * gamma,axis = 0)dx = dout_media / np.sqrt(var + eps)dmean = -np.sum(dout_media / np.sqrt(var+eps),axis = 0)dstd = np.sum(-dout_media * (x - mean) / (var + eps),axis = 0)dvar = 1./2./np.sqrt(var+eps) * dstddx_minus_mean_square = dvar / x.shape[0]dx_minus_mean = 2 * (x-mean) * dx_minus_mean_squaredx += dx_minus_meandmean += np.sum(-dx_minus_mean,axis = 0)dx += dmean / x.shape[0] 

3. 应用:带Batchnorm的多层神经网络

不带Batchnorm多层神经网络的实现参考CS231n作业笔记2.2:多层神经网络的实现。

3.1. 初始化代码

初始化参数,注意beta以及gamma都需要初始化,而且对于x的每一维都存在相应独立的参数。

    self.bn_params = []if self.use_batchnorm:self.bn_params = [{'mode': 'train'} for i in xrange(self.num_layers - 1)]for i in xrange(self.num_layers-1):self.params['beta'+str(i+1)] = np.zeros(hidden_dims[i])self.params['gamma'+str(i+1)] = np.ones(hidden_dims[i])

3.2. 前向传播代码

计算scores,注意对于最后一层全连接的输出不做BN;以及running_mean以及running_var是内部变量,每次只在自己内部更新,不同层的mean与var无关。

    cache = {}hidden_value = Nonehidden_value,cache['fc1'] = affine_forward(X,self.params['W1'],self.params['b1'])if self.use_batchnorm:hidden_value,cache['bn1'] = batchnorm_forward(hidden_value, self.params['gamma1'], self.params['beta1'], self.bn_params[0])hidden_value,cache['relu1'] = relu_forward(hidden_value)for index in range(2,self.num_layers):hidden_value,cache['fc'+str(index)] = affine_forward(hidden_value,self.params['W'+str(index)],self.params['b'+str(index)])if self.use_batchnorm:hidden_value,cache['bn'+str(index)] = batchnorm_forward(hidden_value,  self.params['gamma'+str(index)], self.params['beta'+str(index)], self.bn_params[index-1])hidden_value,cache['relu'+str(index)] = relu_forward(hidden_value)scores,cache['score'] = affine_forward(hidden_value,self.params['W'+str(self.num_layers)],self.params['b'+str(self.num_layers)])

3.3. 后向传播代码

计算gradient,注意本作业对于beta以及gamma不做正则化,但是keras等开源库提供了相应正则化的接口。

    loss, grads = 0.0, {}loss,dscores = softmax_loss(scores,y)for index in range(1,self.num_layers+1):loss += 0.5*self.reg*np.sum(self.params['W'+str(index)]**2)dhidden_value,grads['W'+str(self.num_layers)],grads['b'+str(self.num_layers)] = affine_backward(dscores,cache['score'])for index in range(self.num_layers-1,1,-1):dhidden_value = relu_backward(dhidden_value,cache['relu'+str(index)])if self.use_batchnorm:dhidden_value, grads['gamma'+str(index)], grads['beta'+str(index)] = batchnorm_backward(dhidden_value, cache['bn'+str(index)])dhidden_value,grads['W'+str(index)],grads['b'+str(index)] = affine_backward(dhidden_value,cache['fc'+str(index)])dhidden_value = relu_backward(dhidden_value,cache['relu1'])if self.use_batchnorm:dhidden_value, grads['gamma1'], grads['beta1'] = batchnorm_backward(dhidden_value, cache['bn1'])dhidden_value,grads['W1'],grads['b1'] = affine_backward(dhidden_value,cache['fc1'])for index in range(1,self.num_layers+1):grads['W'+str(index)] += self.reg * self.params['W'+str(index)] 

这篇关于CS231n作业笔记2.4:Batchnorm的实现与使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498323

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义