CUDA 指定设备的方法,CUDA_VISIBLE_DEVICES 设置当前pytorch程序使用那些GPU设备

本文主要是介绍CUDA 指定设备的方法,CUDA_VISIBLE_DEVICES 设置当前pytorch程序使用那些GPU设备,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在进行pytorch 相关程序开发时,有时需要根据自己的规划使用系统中的多块NVidia GPU 设备,可以通过如下几种方法来指定GPU设备:

当服务器有多个GPU卡时,通过设置 CUDA_VISIBLE_DEVICES环境变量可以改变CUDA程序所能使用的GPU设备,默认情况下:标号为0的显卡为主卡。

GPU卡号编码规则

当主机有多个GPU设备时,设置CUDA_VISIBLE_DEVICES 环境变量可以改变CUDA程序所能使用的GPU设备。假如主机中有4块GPU设备,那么这些GPU设备的默认编号为[0,1,2,3],在默认情况下,编号为0的显卡为第一块卡。多卡设置规则如下:

设置示例意义说明
CUDA_VISIBLE_DEVICES=1仅仅第二块卡对当前环境可见
CUDA_VISIBLE_DEVICES=0,1
或者
CUDA_VISIBLE_DEVICES="0,1"
仅仅第一块卡与第二块卡对当前环境可见,如果设置多块卡,可以添加引号,引号是可选的
CUDA_VISIBLE_DEVICES=0,2,3仅仅GPU设备第一块,第三块,第四块 为可见,设备第二块不可见

备注规则:
CUDA应用运行时,CUDA将遍历当前可见的设备,并从零开始为可见设备编号。
第一种情况,卡1设置为主卡,但CUDA遍历时会设置为可见编号0。
最后一种情况,设备0,2,3将显示为设备0,1,2。
如果将字符串的顺序更改为“2,3,0”,则设备2,3,0将分别被设置为0,1,2。
如果为CUDA_VISIBLE_DEVICES 设置了不存在的设备,所有实际设备将被隐藏,CUDA 应用将无法使用GPU设备;如果设备序列是存在和不存在设备的混合,那么不存在设备前的所有存在设备将被重新编号,不存在设备之后的所有设备将被屏蔽。
当前可见的(重新编号后的)设备可使用CUDA 程序来查看,代码如下:

import torch
print(torch.cuda.current_device())

下面说明如何设置GPU卡的使用

一、临时设置

1.1、通过命令提前设置环境变量

#Linux: 后面的值为要使用的GPU编号,正常的话是从0开始
export CUDA_VISIBLE_DEVICES=0
#windows: 
set CUDA_VISIBLE_DEVICES=0

1.2、在Python代码中设置环境变量

import os
# 仅设置一块可见
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# 设置多块可见
os.environ['CUDA_VISIBLE_DEVICES'] = '0,2,3'

1.3、在命令行前指定

CUDA_VISIBLE_DEVICES=0 python some-app.py

二、永久设置

通过编辑 ~/.bashrc 文件来永久设置,系统启动时将加载 ~/.bashrc 文件,达到自动设置的目的。

export CUDA_VISIBLE_DEVICES=1,2,3

然后通过 如下命令刷新环境变量

. ~/.bashrc

三、使用torch.cuda接口 

import torch
#当前可见的(重新编号后的)设备可使用如下代码来查看
print(torch.cuda.current_device())torch.cuda.set_device(0)
#或者 使用pytorch的并行GPU接口
net = torch.nn.DataParallel(model, device_ids=[0])#确定GPU的个数
count = torch.cuda.device_count()
#决策使用哪个设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#把一个模型放到GPU上device = torch.device("cuda:0")
model.to(device)

四、使用torch.nn.DataParallel

多卡数据并行一般使用torch.nn.DataParallel

torch.nn.DataParallel(model,device_ids)'''使用的GPU一定是编号连续的其中model是需要运行的模型,device_ids指定部署模型的显卡,数据类型是list/device。device_ids中的第一个GPU(即device_ids[0])和model.cuda()或torch.cuda.set_device()中的第一个GPU序号应保持一致,否则会报错举例:'''
torch.nn.DataParallel(model, device_ids=device_ids)
torch.nn.DataParallel(modul, device_ids=[x1,x2,x3,x4,x5,x6,x7])torch.nn.DataParallel(model,device_ids = range(torch.cuda.device_count()) )

此外如果两者的第一个GPU序号都不是0,比如设置为:

'''
如下代码,程序可以在GPU2和GPU3上正常运行。
device_ids的默认值是使用可见的GPU,不设置model.cuda()或torch.cuda.set_device()等效于设置了model.cuda(0)
'''
model=torch.nn.DataParallel(model,device_ids=[2,3])
model.cuda(2)#模型绑定GPU代码
model = model.cuda() 
device_ids = [0, 1] 	
model = torch.nn.DataParallel(model, device_ids=device_ids)

这篇关于CUDA 指定设备的方法,CUDA_VISIBLE_DEVICES 设置当前pytorch程序使用那些GPU设备的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497313

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e