谣言识别系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯)

本文主要是介绍谣言识别系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

谣言识别系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯)

简介

谣言识别系统是新闻分类系统的后续,这次我补充了正确新闻的数据集,为了体现新闻的绝对正确性,我爬取了澎湃新闻的数据。

谣言的数据集爬取与处理请参考我的新闻处理系统的数据集,请看点开下面的网址。

http://blog.csdn.net/sileixinhua/article/details/74943336

所有的数据集和代码,结果截图都上传至github

https://github.com/sileixinhua/News-classification/

谣言数据集为false,有3183个。

非谣言新闻数据集为true,有1674个。

这个实验结果是99%,我想结果是过于高了,产生了过拟合。可能谣言新闻都是生活类的,非谣言新闻因为都是澎湃新闻的原因,所以用两类完全不同用词的新闻,用贝叶斯也很好区分分类。

开发环境

Beautiful Soup 4.4.0 文档: http://beautifulsoup.readthedocs.io/zh_CN/latest/#id28

Requests : http://cn.python-requests.org/zh_CN/latest/

Python3

sklearn :http://scikit-learn.org/stable/

Windows10

sublime

jieba分词

澎湃新闻的新闻爬去页面分析

图1:澎湃新闻主页页面

这里写图片描述

图2:澎湃新闻的新闻主题内容页面

这里写图片描述

图3:澎湃新闻的新闻主题内容页面的新闻标签内容

这里写图片描述

爬虫策略:

由于新闻内容全部都是在news_txt类名标签中,所以也很好处理,直接

soup_text.find_all(["news_txt"])

获取新闻内容即可。

代码

澎湃新闻的爬取和处理

# 2017年7月13日15:27:02
# silei
# 爬虫目标网站:http://www.thepaper.cn/newsDetail_forward_
# 获取信息BeautifulSoup+request
# 正确新闻的爬去,分词,去停用词# -*- coding:UTF-8 -*-from urllib import request
from bs4 import BeautifulSoup
import re
import sys
import codecs
import jieba
import requestsif __name__ == "__main__":   text_file_number = 0web_url_number = 1701736while web_url_number < 1731414 :get_url = 'http://www.thepaper.cn/newsDetail_forward_'+str(web_url_number)   head = {}   #设置头head['User-Agent'] = 'Mozilla/5.0 (Linux; Android 4.1.1; Nexus 7 Build/JRO03D) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166  Safari/535.19'# 模拟浏览器模式,定制请求头download_req_get = request.Request(url = get_url, headers = head)# 设置Requestr = requests.get(get_url)print(get_url)print(r.status_code)download_response_get = request.urlopen(download_req_get)# 设置urlopen获取页面所有内容download_html_get = download_response_get.read().decode('UTF-8','ignore')# UTF-8模式读取获取的页面信息标签和内容soup_text = BeautifulSoup(download_html_get, 'lxml')soup_text.find_all(["news_txt"])# BeautifulSoup读取页面html标签和内容的信息web_text = re.compile("<[^>]+>")content=web_text.sub("", str(soup_text))if soup_text == "" :print('字符串为空')continue# 去除页面标签stoplist = {}.fromkeys([content.strip() for content in open("../data/stopword.txt",encoding= 'UTF-8') ])  # 读取停用词在列表中seg_list = jieba.lcut(content,cut_all=False)# jieba分词精确模式seg_list = [word for word in list(seg_list) if word not in stoplist]  # 去除停用词# print("Default Mode:", "/ ".join(seg_list))file_write = codecs.open('../data/train_data_news/true/'+str(text_file_number)+'.txt','w','UTF-8')# 将信息存储在本地for i in range(len(seg_list)):file_write.write(str(seg_list[i])+'\n')file_write.close()print('写入成功')text_file_number = text_file_number + 1web_url_number = web_url_number + 1

谣言分类识别

# 时间:2017年7月13日17:10:27
# silei
# 正确的新闻个数1674#coding: utf-8
import os
import time
import random
import jieba
import nltk
import sklearn
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import pylab as pl
import matplotlib.pyplot as pltdef MakeWordsSet(words_file):words_set = set()with open(words_file, 'r', encoding='UTF-8') as fp:for line in fp.readlines():word = line.strip()if len(word)>0 and word not in words_set: # 去重words_set.add(word)return words_setdef TextProcessing(folder_path, test_size=0.2):folder_list = os.listdir(folder_path)data_list = []class_list = []# 类间循环for folder in folder_list:new_folder_path = os.path.join(folder_path, folder)files = os.listdir(new_folder_path)# 类内循环j = 0for file in files:if j > 410: # 每类text样本数最多100breakwith open(os.path.join(new_folder_path, file), 'r', encoding='UTF-8') as fp:raw = fp.read()# print raw## --------------------------------------------------------------------------------## jieba分词# jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数,不支持windowsword_cut = jieba.cut(raw, cut_all=False) # 精确模式,返回的结构是一个可迭代的genertorword_list = list(word_cut) # genertor转化为list,每个词unicode格式# jieba.disable_parallel() # 关闭并行分词模式# print word_list## --------------------------------------------------------------------------------data_list.append(word_list)class_list.append(folder)j += 1## 划分训练集和测试集# train_data_list, test_data_list, train_class_list, test_class_list = sklearn.cross_validation.train_test_split(data_list, class_list, test_size=test_size)data_class_list = list(zip(data_list, class_list))random.shuffle(data_class_list)index = int(len(data_class_list)*test_size)+1train_list = data_class_list[index:]test_list = data_class_list[:index]train_data_list, train_class_list = zip(*train_list)test_data_list, test_class_list = zip(*test_list)# 统计词频放入all_words_dictall_words_dict = {}for word_list in train_data_list:for word in word_list:if word in all_words_dict:  all_words_dict[word] += 1else:all_words_dict[word] = 1# key函数利用词频进行降序排序all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f:f[1], reverse=True) # 内建函数sorted参数需为listall_words_list = list(zip(*all_words_tuple_list))[0]return all_words_list, train_data_list, test_data_list, train_class_list, test_class_listdef words_dict(all_words_list, deleteN, stopwords_set=set()):# 选取特征词feature_words = []n = 1for t in range(deleteN, len(all_words_list), 1):if n > 1000: # feature_words的维度1000break# print all_words_list[t]if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1<len(all_words_list[t])<5:feature_words.append(all_words_list[t])n += 1return feature_wordsdef TextFeatures(train_data_list, test_data_list, feature_words, flag='nltk'):def text_features(text, feature_words):text_words = set(text)## -----------------------------------------------------------------------------------if flag == 'nltk':## nltk特征 dictfeatures = {word:1 if word in text_words else 0 for word in feature_words}elif flag == 'sklearn':## sklearn特征 listfeatures = [1 if word in text_words else 0 for word in feature_words]else:features = []## -----------------------------------------------------------------------------------return featurestrain_feature_list = [text_features(text, feature_words) for text in train_data_list]test_feature_list = [text_features(text, feature_words) for text in test_data_list]return train_feature_list, test_feature_listdef TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag='nltk'):## -----------------------------------------------------------------------------------if flag == 'nltk':## nltk分类器train_flist = zip(train_feature_list, train_class_list)test_flist = zip(test_feature_list, test_class_list)classifier = nltk.classify.NaiveBayesClassifier.train(train_flist)# print classifier.classify_many(test_feature_list)# for test_feature in test_feature_list:#     print classifier.classify(test_feature),# print ''test_accuracy = nltk.classify.accuracy(classifier, test_flist)elif flag == 'sklearn':## sklearn分类器classifier = MultinomialNB().fit(train_feature_list, train_class_list)# print classifier.predict(test_feature_list)# for test_feature in test_feature_list:#     print classifier.predict(test_feature)[0],# print ''test_accuracy = classifier.score(test_feature_list, test_class_list)else:test_accuracy = []return test_accuracyif __name__ == '__main__':print("start")## 文本预处理folder_path = 'C:\\Code\\uwasa\\data\\train_data_news'all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = TextProcessing(folder_path, test_size=0.2)# 生成stopwords_setstopwords_file = 'C:\\Code\\uwasa\\data\\stopword.txt'stopwords_set = MakeWordsSet(stopwords_file)## 文本特征提取和分类# flag = 'nltk'flag = 'sklearn'deleteNs = range(0, 1000, 20)test_accuracy_list = []for deleteN in deleteNs:# feature_words = words_dict(all_words_list, deleteN)feature_words = words_dict(all_words_list, deleteN, stopwords_set)train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words, flag)test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag)test_accuracy_list.append(test_accuracy)print(test_accuracy_list)# 结果评价plt.figure()plt.plot(deleteNs, test_accuracy_list)plt.title('Relationship of deleteNs and test_accuracy')plt.xlabel('deleteNs')plt.ylabel('test_accuracy')plt.savefig('result_rumor.png')print("finished")

结果

这里写图片描述

感想

由于数据集的原因产生了过拟合,有兴趣的同学可以再收集一些新闻,我的两个数据集一个生活养生类的谣言,一个是澎湃新闻,两者差距太大,所以分类结果会过高。

不知不觉从四月开学到现在三个多月过去了,每周的开会和研究报告,学习了整本的《python machine learning》,但是代码还没有全部实现完,马上回家要把PDF书看完,然后回来之后再接着找点实际的数据处理处理。

现在我关注了很多最新论文解说的公众号,的确能有效提高效率,但是我还是找点论文看,英语不能落下。

下一阶段计划有空把Python的网络编程和go语言学习一下。

加油。

——————————————————————————————————-

有学习机器学习相关同学可以加群,交流,学习,不定期更新最新的机器学习pdf书籍等资源。

QQ群号: 657119450

这里写图片描述

这篇关于谣言识别系统(Python):爬虫(bs+rq)+数据处理(jieba分词)+分类器(贝叶斯)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/496620

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e