数字病理图像分析的开源软件qupath学习 ①

2023-12-15 06:12

本文主要是介绍数字病理图像分析的开源软件qupath学习 ①,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍:QuPath是一种新的生物图像分析软件,旨在满足对用户友好、可扩展、开源解决方案日益增长的需求,用于数字病理学和全玻片图像分析。除了提供全面的肿瘤识别和高通量生物标志物评估工具外,QuPath 还为研究人员提供了强大的批处理和脚本功能,以及一个可扩展的平台,用于开发和共享分析复杂组织图像的新算法。此外,QuPath的灵活设计使其适用于生物医学研究中的各种其他图像分析应用。

使用:它提供了第一个全面的开源桌面软件应用程序,专门用于分析和探索整个玻片成像数据。其核心是一个跨平台、多线程、基于图块的全幻灯片图像查看器,其中包含广泛的注释和可视化工具。最重要的是,QuPath提供了一系列新颖的算法,不仅为病理学中常见的、具有挑战性的分析问题提供现成的、用户友好的解决方案,而且还提供了创建自定义工作流程的构建块,并将它们链接在一起,通过强大的脚本功能进行批处理。


文献示例过程:

TMA:从每个病例的肿瘤中心取三个代表性区域进行注释,单个代表性肿瘤块中切割一个新的切片进行H&E染色,注释为组织微阵列( tissue microarray TMA)。用从供体块中手动穿刺提取直径为1毫米的组织核心(应该是作为TMA)。

免疫组化:CD3 、CD8、p53 和 PD-L1。

扫片:所有 TMA 载玻片均使用 Aperio ScanScope CS 全玻片扫描仪以 40 倍放大倍率扫描,分辨率为 0.25 μm/像素。H&E玻片扫描:231个在Aperio ScanScope扫描仪上扫描,81个在滨松纳米变焦器上扫描,分辨率都在0.231-0.253 μm/像素范围内。

QuPath分析数据:通过使用颜色反卷积分离染色剂并识别平滑后苏木精通道 (CD3) 或苏木精和 DAB 通道总和 (CD8) 中的峰来鉴定单个细胞,并根据平滑的 DAB 通道信息将这些细胞分配为阳性或阴性细胞。使用检测到的阳性细胞数和面积来计算每平方毫米的平均阳性细胞数。设置强度阈值以根据平均核 DAB 光密度进一步将肿瘤细胞细分为 p53 染色的阴性、弱、中度或强阳性。通过添加 3x% 强染色的肿瘤细胞核、2x% 中度染色的肿瘤细胞核和 1x% 弱染色的肿瘤细胞核来计算每个组织核心的 H 评分,给出的结果范围为 0(所有肿瘤核阴性)到 300(所有肿瘤核强阳性)。基质识别:H&E全切片肿瘤间质百分比分析。先用 QuPath 的手动注释工具在所有 312 张 H&E 染色载玻片上注释了具有代表性的肿瘤区域。然后批量应用脚本,自动识别和设置每个图像的红色、绿色和蓝色通道的平均背景强度。然后病理学家用40张切片交互式训练随机树分类器来区分肿瘤上皮、基质和“其他”(空白、粘液、正常肌肉或坏死等)。然后计算肿瘤基质百分比 (TSP) :TSP = AS/(AE + AS) × 100 %

AS 表示归类为基质的总面积,AE 表示归类为上皮的总面积。

解释:(a-d)对 CD3、CD8、p53 和 PD-L1 染色的 TMA 生物标志物评分进行 Kaplan Meier 生存分析。(e) Kaplan Meier 曲线显示基于中位肿瘤基质百分比的患者分层。代表性图像分别显示了高基质百分比和低基质百分比的肿瘤的原始图像和标记。绿色表示被归类为基质的区域,深红色表示肿瘤上皮,而黄色表示其他分类的组织或空白。


作为深度学习神经网络的训练工具

QuPath为高级人工智能的训练、提供和应用提供了一个框架,超越了内置的机器学习方法。该框架可以包括任何内容,从通过病理学家注释或补丁提取来训练更高级的深度学习神经网络,到最终在QuPath之外获取的数据上训练的深度学习模型的可视化。

参考:

1:QuPath: Open source software for digital pathology image analysis - PMC (nih.gov)

2:QuPath: The global impact of an open source digital pathology system

3:qupath/qupath: QuPath - Bioimage analysis & digital pathology (github.com)

4:Projects — QuPath 0.5.0 documentation

5:【笔记】QuPath用于免疫组化定量评估 - 知乎 (zhihu.com)

6:实验动物病理学切片开源处理软件QuPath官方免疫组化教程Qupath IHC_哔哩哔哩_bilibili

这篇关于数字病理图像分析的开源软件qupath学习 ①的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/495398

相关文章

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java