将VOC2012格式的数据集转为YOLOV8格式

2023-12-15 00:44

本文主要是介绍将VOC2012格式的数据集转为YOLOV8格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 1.数据集格式
    • 1.1数据集目录格式对比
    • 1.2标签格式对比
  • 2.格式转换脚本
  • 3.文件处理脚本

简介

  1. 将voc2012中xml格式的标签转为yolov8中txt格式
  2. 将转换后的图像和标签按照yolov8训练的要求整理为对应的目录结构

1.数据集格式

1.1数据集目录格式对比

(1)VOC2012的数据集文件目录如下:
在这里插入图片描述
(2)YOLOv8需要的文件目录
在这里插入图片描述
同时需要生成关于训练集、验证集和测试集图像目录的txt文件,最好是绝对路径
在这里插入图片描述
在这里插入图片描述

1.2标签格式对比

(1)voc数据集标签
在这里插入图片描述
(2)YOLO数据集标签
每一行代表一个目标框的信息:{class_index} {x_center} {y_center} {width} {height}
在这里插入图片描述

2.格式转换脚本

修改脚本中文件目录,然后运行:

python3 trans_voc_yolo.py
# -*- coding: utf-8 -*-
# 在脚本中,你需要将`voc_labels_folder`和`output_folder`两个变量设置为正确的路径
# 分别是VOC2012数据集的XML标签文件夹路径和转换后的YOLO格式标签文件夹路径。同时,你还需要根据VOC2012数据集的类别列表自定义`class_names`变量的内容。
# 执行脚本后,它会遍历VOC2012数据集的XML标签文件夹中的每个XML文件,解析其中的目标实例信息,并将它们转换为YOLO格式的txt标签文件。
# 转换后的txt文件将保存在指定的输出文件夹中,每个txt文件对应相应的XML文件。
# 请确保脚本中的文件路径正确,并提前创建好输出文件夹。运行脚本后,你会在输出文件夹中得到与VOC2012数据集中的每个XML标签文件对应的YOLO格式txt标签文件。import xml.etree.ElementTree as ET
import osvoc_labels_folder = 'Annotations/'  # VOC2012的XML标签文件夹路径
output_folder = 'yolo_labels/'  # 转换后的YOLO格式标签文件夹路径
class_names = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable','dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # 类别名称列表if not os.path.exists(output_folder):os.makedirs(output_folder)for xml_file in os.listdir(voc_labels_folder):tree = ET.parse(os.path.join(voc_labels_folder, xml_file))root = tree.getroot()image_width = int(root.find('size/width').text)image_height = int(root.find('size/height').text)txt_file = xml_file.replace('.xml', '.txt')txt_path = os.path.join(output_folder, txt_file)with open(txt_path, 'w') as f:for obj in root.findall('object'):class_name = obj.find('name').textclass_index = class_names.index(class_name)bbox = obj.find('bndbox')x_min = int(float(bbox.find('xmin').text))y_min = int(float(bbox.find('ymin').text))x_max = int(float(bbox.find('xmax').text))y_max = int(float(bbox.find('ymax').text))x_center = (x_min + x_max) / (2 * image_width)y_center = (y_min + y_max) / (2 * image_height)width = (x_max - x_min) / image_widthheight = (y_max - y_min) / image_heightf.write(f'{class_index} {x_center} {y_center} {width} {height}\n')

3.文件处理脚本

将数据集按照7:2:1的比例划分为训练集、验证集和测试集,并生成相应的目录

python3 split_train_val_test.py
# -*- coding: utf-8 -*-import os
import random
import shutil# 设置文件路径和划分比例
root_path = "/home/lusx/data/voc_yolo/"
image_dir = "JPEGImages/"
label_dir = "labels_sum/"
train_ratio = 0.7
val_ratio = 0.2
test_ratio = 0.1# 创建训练集、验证集和测试集目录
os.makedirs("images/train", exist_ok=True)
os.makedirs("images/val", exist_ok=True)
os.makedirs("images/test", exist_ok=True)
os.makedirs("labels/train", exist_ok=True)
os.makedirs("labels/val", exist_ok=True)
os.makedirs("labels/test", exist_ok=True)# 获取所有图像文件名
image_files = os.listdir(image_dir)
total_images = len(image_files)
random.shuffle(image_files)# 计算划分数量
train_count = int(total_images * train_ratio)
val_count = int(total_images * val_ratio)
test_count = total_images - train_count - val_count# 划分训练集
train_images = image_files[:train_count]
for image_file in train_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/train/")shutil.copy(os.path.join(label_dir, label_file), "labels/train/")# 划分验证集
val_images = image_files[train_count:train_count+val_count]
for image_file in val_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/val/")shutil.copy(os.path.join(label_dir, label_file), "labels/val/")# 划分测试集
test_images = image_files[train_count+val_count:]
for image_file in test_images:label_file = image_file[:image_file.rfind(".")] + ".txt"shutil.copy(os.path.join(image_dir, image_file), "images/test/")shutil.copy(os.path.join(label_dir, label_file), "labels/test/")# 生成训练集图片路径txt文件
with open("train.txt", "w") as file:file.write("\n".join([root_path + "images/train/" + image_file for image_file in train_images]))# 生成验证集图片路径txt文件
with open("val.txt", "w") as file:file.write("\n".join([root_path + "images/val/" + image_file for image_file in val_images]))# 生成测试集图片路径txt文件
with open("test.txt", "w") as file:file.write("\n".join([root_path + "images/test/" + image_file for image_file in test_images]))print("数据划分完成!")

这篇关于将VOC2012格式的数据集转为YOLOV8格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494492

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库