8.spark自适应查询-AQE之自适应调整Shuffle分区数量

2023-12-14 21:40

本文主要是介绍8.spark自适应查询-AQE之自适应调整Shuffle分区数量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 概述
  • 主要功能
    • 自适应调整Shuffle分区数量
      • 原理
      • 默认环境配置
      • 修改配置
  • 结束

概述

自适应查询执行(AQE)是 Spark SQL中的一种优化技术,它利用运行时统计信息来选择最高效的查询执行计划,自Apache Spark 3.2.0以来默认启用该计划。从Spark 3.0开始,AQE有三个主要功如下

  • 自适应查询AQE(Adaptive Query Execution)
    • 自适应调整Shuffle分区数量
      • 原理
      • 默认环境配置
      • 修改配置
    • 动态调整Join策略
    • 动态优化倾斜的 Join

主要功能

自适应调整Shuffle分区数量

spark.sql.adaptive.enabledspark.sql.adaptive.coalescePartitions.enabled配置均为true时,自适应调整Shuffle分区数量功能就启动了

属性名称默认值功能版本
spark.sql.adaptive.enabledtrue必备条件之一3.0.0
spark.sql.adaptive.coalescePartitions.enabledtrue必备条件之二3.0.0
spark.sql.adaptive.advisoryPartitionSizeInBytes64 MB自适应优化期间shuffle分区的建议大小(以字节为单位)。当Spark合并小的shuffle分区或拆分倾斜的shuffler分区时,它就会生效。3.0.0
spark.sql.adaptive.coalescePartitions.parallelismFirsttrue当为true时,Spark在合并连续的shuffle分区时会忽略Spark.sql.adaptive.advisoryPartitionSizeInBytes(默认64MB)指定的目标大小,并且只遵循Spark.sql.adaptive.salecePartitions.minPartitionSize(默认1MB)指定的最小分区大小,以最大限度地提高并行性。这是为了在启用自适应查询执行时避免性能回归建议将此配置设置为false,并遵守spark.sql.adaptive.advisoryPartitionSizeInBytes指定的目标大小。3.2.0

原理

Spark在处理海量数据的时候,其中的Shuffle过程是比较消耗资源的,也比较影响性能,因为它需要在网络中传输数据
shuffle 中的一个关键属性是:分区的数量。
分区的最佳数量取决于数据自身大小,但是数据大小可能在不同的阶段、不同的查询之间有很大的差异,这使得这个数字很难精准调优。
如果分区数量太多,每个分区的数据就很小,读取小的数据块会导致IO效率降低,并且也会产生过多的task, 这样会给Spark任务带来更多负担。
如果分区数量太少,那么每个分区处理的数据可能非常大,处理这些大分区的数据可能需要将数据溢写到磁盘(例如:排序或聚合操作),这样也会降低计算效率。

Spark初始会设置一个较大的Shuffle分区个数,这个数值默认是200,后续在运行时会根据动态统计到的数据信息,将小的分区合并,也就是慢慢减少分区数量。

测试时将以SELECT workorder,unitid,partid,partname,routeid,lineid from ods.xx where dt ='2023-06-24' group by workorder,unitid,partid ,partname ,routeid,lineid 语句进行测试,为了看出 Shuffle 的效果,group 字段多了一些

将初始的 Shuffle 分区数量设置为 5,所以在 Shuffle 过程中数据会产生5 个分区。如果没有开启自适应调整Shuffle分区数量这个策略,Spark会启动5个Recuce任务来完成最后的聚合。但是这里面有3个非常小的分区,为每个分区分别启动一个单独的任务会浪费资源,并且也无法提高执行效率。如下图:
在这里插入图片描述
开启自适应调整 Shuffle 分区数量之后,Spark 会将这3个数据量比较小的分区合并为 1 个分区,让1个reduce任务处理
在这里插入图片描述

默认环境配置

测试案例:

案例环境,使用的是 spark 3.2.4kyuubi 1.7.1 版本,使用一张 20 亿的表做优化测试的,也可以准备一个 json 文件,加载后转成 DataFrame

在这里插入图片描述

SELECT  workorder,unitid,partid,partname,routeid,lineid  from ods.xx where dt ='2023-06-24' group by workorder,unitid,partid ,partname ,routeid,lineid 

在这里插入图片描述
在这里插入图片描述

由上两个图,可以看出21任务,每个任务只是 3~4 M 这样,原因是因

spark.sql.adaptive.coalescePartitions.parallelismFirst = true

修改配置

spark.sql.adaptive.coalescePartitions.parallelismFirst=false

在这里插入图片描述
在这里插入图片描述
可以看出,两三千万的数据,shuffle 处理上还是有倾斜的,但海量数据下,基本上是接近64m的。

结束

至此,自适应调整Shuffle分区数量,就结束了。

这篇关于8.spark自适应查询-AQE之自适应调整Shuffle分区数量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493971

相关文章

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优