单日30PB量级!火山引擎ByteHouse云原生的数据导入这么做

2023-12-14 17:28

本文主要是介绍单日30PB量级!火山引擎ByteHouse云原生的数据导入这么做,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群

近期,火山引擎ByteHouse技术专家受邀参加DataFunCon2023(深圳站)活动,并以“火山引擎ByteHouse基于云原生架构的实时导入探索与实践”为题进行了技术分享。在分享中,火山引擎ByteHouse技术专家以Kafka和物化MySQL两种实时导入技术为例,介绍了ByteHouse的整体架构演进以及基于不同架构的实时导入技术实现。

随着企业降本增效、智能化数据决策需求的增强,传统的商业数据库已经难以满足和响应快速增长的业务诉求。在此背景下,云原生数据库成为大势所趋。云原生数据库基于云平台构建、部署和分发,具有高可用性、高性能、高可靠等特点,可以帮助企业更好地实现数据智能化决策。

火山引擎ByteHouse是基于开源ClickHouse进行技术优化和升级的一款云原生数据仓库。ClickHouse原有的分布式架构具有无中心多主节点以及存储方便的优势。但它也存在节点故障处理成本高、读写冲突、扩容成本高以及一致性欠缺等架构痛点。基于此,ByteHouse在社区分布式架构基础上,演进并开源了ClickHouse新型云原生架构。并且ByteHouse在新架构下也做了实时导入技术的设计与实现。

不同架构实时导入技术比较(Kafka)

据介绍,火山引擎ByteHouse云原生架构分为三层:第一层是云服务入口,负责承接所有的用户请求;第二层是执行层,主要负责查询和导入的功能,实现读写分离;第三层是数据存储层,支持多种云存储组件。在云原生架构下,ByteHouse不仅具有运维成本和门槛低的架构优势,还通过读写分离等手段解决了查询高峰导致导入停滞等问题,并且得益于架构优势引入了弹性扩缩容能力以及高可用性。


火山引擎ByteHouse云原生架构图

由于云原生架构的应用,面对字节跳动内部激增的业务量以及处理庞大数据量的需求,ByteHouse在实时导入技术方面进行了相应的优化升级。目前,ByteHouse以Kafka和物化MySQL作为实时导入的主要数据源。

在Kafka导入实现中,ByteHouse可以实现秒级数据延时和单表GiB级吞吐,支持绝大部分在线实时分析业务场景。相比社区版本,其优势在于高可用性和容错机制,并支持Exactly-Once消费语义,保证数据的可靠性和完整性。

物化MySQL是一种将MySQL数据库中的数据按库级别同步到ByteHouse中的能力,主要工作流程为基于MySQL数据库创建一个物化库引擎,该引擎初始化时从MySQL拉取指定库的所有存量数据,后续通过binlog同步回放的方式持续同步增量数据。其优势在于,不仅保证数据的一致性和完整性,还可以对数据实时分析和处理,提高处理的速度和效率。

目前,火山引擎ByteHouse云原生架构已经全面服务内、外部多种业务场景,实时导入已支持超过2500个服务节点,每天实时导入数据规模超过30PB。未来,火山引擎ByteHouse团队还将持续探索更通用的实时导入技术解决方案,进一步提升数据导入的性能和通用性。

点击跳转火山引擎ByteHouse了解更多

这篇关于单日30PB量级!火山引擎ByteHouse云原生的数据导入这么做的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493396

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr